20241128 Reactievergelijkingen

Toegepaste scheikunde les 2 - Bodemanalyse en reactievergelijkingen
1 / 34
suivant
Slide 1: Diapositive
ScheikundeMBOStudiejaar 1,3

Cette leçon contient 34 diapositives, avec quiz interactifs, diapositives de texte et 1 vidéo.

Éléments de cette leçon

Toegepaste scheikunde les 2 - Bodemanalyse en reactievergelijkingen

Slide 1 - Diapositive

Cet élément n'a pas d'instructions

Toegepaste scheikunde - Bodem bemesting

Slide 2 - Diapositive

Cet élément n'a pas d'instructions

Thema's bij toegepaste scheikunde
  1. Stoffen en molecuulformules
  2. Bodemanalyse en reactievergelijkingen
  3. Grond- en oppervlaktewater
  4. Fotosynthese
  5. pH in de bodem en pH in het melksysteem
  6. Mest en urine
  7. Broeikasgas 
  1. Stoffen en molecuulformules
  2. Bodemanalyse en reactievergelijkingen
  3. Grond- en oppervlaktewater
  4. Fotosynthese
  5. pH in de bodem en pH in het melksysteem
  6. Mest en urine
  7. Broeikasgas 

Slide 3 - Diapositive

Cet élément n'a pas d'instructions

Planning
  • Periode 2 
  • 1 uur in de week
  • Thema 1t/m 3
  • Toets als afsluiting
  • Periode 3
  • 1 uur in de week
  • Thema 4 t/m 7
  • Toets als afsluiting
  • Cijfers gemiddeld = eindcijfer

Slide 4 - Diapositive

Cet élément n'a pas d'instructions

Deze periode
Week 1 - 7 november: Stoffen en molecuulformules
Week 2 - 14 november: Stoffen en molecuulformules
Week 3 - 21 november: Bodemanalyse en reactievergelijkingen
Week 4 - 28 november: Bodemanalyse en reactievergelijkingen
Week 5 - 05 december: Grond- en oppervlaktewater
Week 6 - 12 december: Herhaling lesstof - Les vervalt!!!
Week 7 - 19 december: Herhaling lesstof, Oefentoets
Week 8 - 09 januari: Toets deel 1

Slide 5 - Diapositive

Cet élément n'a pas d'instructions

0

Slide 6 - Vidéo

Kenmerken meeschrijven op het bord om te gebruiken bij de volgende opdracht om chemische reacties te herkennen

Afspelen tot 2.18
Chemische reacties
  • Eigenschappen van reagerende stoffen verdwijnen
  • Ontstaan nieuwe stoffen met nieuwe eigenschappen

Bijvoorbeeld:
Het bevriezen van water een chemische reactie?
  • Water verandert in ijs --> de vloeibaarheid verdwijnt
  • Alle chemische eigenschappen blijven echter bestaan (kookpunt, smeltpunt etc.)
  • Alleen aggregatietoestand is enkel veranderd

Slide 7 - Diapositive

Wat is een chemische reactie?
Een chemische reactie is een proces waarbij de beginstoffen worden omgezet in reactieproducten. Tijdens de reactie worden bestaande verbindingen in moleculen verbroken en/of nieuwe bindingen gevormd.
Chemische reacties vinden niet alleen plaats in laboratoria. Ook in het dagelijks leven zijn allerlei voorbeelden van chemische reacties te vinden.
Denk aan:
Het braden van vlees
Het bederven van voedsel
De vorming van kalkaanslag (dit is een voorbeeld van een omkeerbare evenwichtsreactie)
Het roesten van metaal
Bij een chemische reactie gebeurt het volgende:

- de (eigenschappen van de) beginstof verdwijnt
- er ontstaat een nieuw reactieproduct
 - het is onomkeerbaar
Chemische reacties worden weergegeven in een:

- Reactie-schema 
of
- Reactievergelijking

Slide 8 - Diapositive

Cet élément n'a pas d'instructions

Reactieschema
Bijvoorbeeld de verbranding van koolstof:


Slide 9 - Diapositive

In een reactieschema schrijven we schematisch op welke stoffen voor de reactie aanwezig waren (de beginstoffen) en welke stoffen na de reactie zijn ontstaan (de reactieproducten). De reactie zelf wordt aangegeven met een pijl. Achter elke stof wordt aangegeven in welke fase deze stof zich bevindt.
Dus: beginstof 1 (fase) + beginstof 2 (fase) ® reactieproduct 1 (fase) + reactieproduct 2 (fase)
Het reactieschema voor de verbranding van koolstof ziet er bijvoorbeeld als volgt uit:
koolstof (s) + zuurstof (g) ® koolstofdioxide (g)
 
Reactieschema
Een chemische reactie kun je verkort weergeven in een reactieschema, waarin je de namen en de toestandsaanduidingen (= aggregatietoestanden) van de beginstoffen voor de pijl en van de reactieproducten achter de pijl plaatst.
Toestandsaanduidingen: gas (g), vast (s), vloeibaar (l) en opgelost (aq)

Slide 10 - Diapositive

Een chemische reactie is een proces waarbij de beginstoffen worden omgezet in reactieproducten. Tijdens de reactie worden bestaande verbindingen in moleculen verbroken en/of nieuwe bindingen gevormd.
Chemische reacties vinden niet alleen plaats in laboratoria. Ook in het dagelijks leven zijn allerlei voorbeelden van chemische reacties te vinden.
Denk aan:
  • Het braden van vlees
  • Het bederven van voedsel
  • De vorming van kalkaanslag (dit is een voorbeeld van een omkeerbare evenwichtsreactie)
  • Het roesten van metaal

Bij een chemische reactie gelden de volgende regels of wetten:
Wet van behoud van massa (Wet van Lavoisier)
Bij een chemische reactie is de totale massa van de beginstoffen gelijk aan de totale massa van de reactieproducten.
In chemische reacties worden dus GEEN atomen gemaakt of vernietigd.
Wet van constante massaverhouding (Wet van Proust)
Stoffen reageren en ontstaan in een vaste massaverhouding.
Bij elke chemische reactie treedt er een energie-effect op.
Voor sommige reacties is er energie (warmte, licht of elektriciteit) nodig en in andere gevallen komt er tijdens de reactie juist energie vrij.
Een chemische reactie waarbij energie wordt opgenomen noemen we een endotherme reactie. Bijvoorbeeld: het koken van een ei.
Een chemische reactie waarbij energie vrijkomt noemen we een exotherme reactie. Bijvoorbeeld: het aansteken van gas. 
Een aantal belangrijke..
We behandelen tijdens deze les:
- fotosynthese
- dissimilatie
- mineralisatie

Slide 11 - Diapositive

Cet élément n'a pas d'instructions

Een belangrijke reactievergelijking in onze sector is fotosynthese
Water + koolstofdioxide + licht --> zuurstof + glucose

In molecuulformule:
H2O + CO2 + licht
--> O2+ C6 H12 O6

Slide 12 - Diapositive

Cet élément n'a pas d'instructions

Wet van behoud van massa
 'de wet van Lavoisier'

De massa van alle stoffen voor de reactie is samen net zo groot als de massa van alle reactieproducten bij elkaar .

Er kan geen massa verloren gaan!

Slide 13 - Diapositive

Omdat er tijdens een chemische reactie geen atomen gemaakt of vernietigd worden, moeten we ervoor zorgen dat er voor en na de pijl evenveel atomen van elke atoomsoort staan. In de bovenstaande reactievergelijking is dit het geval.
Is dit niet het geval, ga dan als volgt te werk:
Schrijf op hoeveel atomen je aan beide kanten van de vergelijking hebt.
Begin met de atomen in evenwicht te brengen. Dit doe je door voor de molecuulformule een cijfer te zetten (ook wel coëfficiënt genoemd).
Het is hierbij het handigst om te beginnen met een atoomsoort die in het minst aantal moleculen voorkomt en te eindigen met een molecuul dat maar één atoomsoort bevat.

Slide 14 - Diapositive

Reactieschema's en reactievergelijkingen
Chemische reacties kunnen weergeven worden in een reactieschema of een reactievergelijking.
Reactieschema
In een reactieschema schrijven we schematisch op welke stoffen voor de reactie aanwezig waren (de beginstoffen) en welke stoffen na de reactie zijn ontstaan (de reactieproducten). De reactie zelf wordt aangegeven met een pijl. Achter elke stof wordt aangegeven in welke fase deze stof zich bevindt.
Dus: beginstof 1 (fase) + beginstof 2 (fase) ® reactieproduct 1 (fase) + reactieproduct 2 (fase)
Het reactieschema voor de verbranding van koolstof ziet er bijvoorbeeld als volgt uit:
koolstof (s) + zuurstof (g) ® koolstofdioxide (g)

De wet van behoud van massa stelt dat er bij een chemische reactie geen massa verloren gaat. Deze wet wordt ook wel de wet van Lavoisier genoemd. De wet vertelt dat de totale massa van de moleculen die worden gebruikt om een reactie tot stand te laten komen (reagentia), hetzelfde is als de totale massa van de moleculen die door de reactie worden gevormd (reactieproducten).
In vergelijkingsvorm is dat:
min = muit
De wet is sinds zijn uitvinding in 1789 de standaardmanier waarop scheikundigen reactieproducten achterhalen. Je hoeft maar twee dingen te weten om erachter te komen wat de missende reactieproducten zijn:
De massa van de moleculen vóór de reactie.
De massa van een paar reactieproducten.
Hoe gebruik je de wet van behoud van massa?
Hoe gebruik je de wet van behoud van massa?
De wet van behoud van massa is een handige tool om reactievergelijkingen kloppend te maken. Als een deel van de reactievergelijking bekend is, kun je de details van de reactie achterhalen.
Voorbeeld:
Bij verbranding van methaan komen CO2 en H2O vrij. Maar in welke verhoudingen gebeurt deze reactie eigenlijk? Daarvoor kan de wet van behoud van massa worden gebruikt. De reactievergelijking ziet er dan als volgt uit:
Reactievergelijking verbranding methaan
In de vergelijking is te zien dat er aan de linker- en rechterkant niet evenveel van alle atomen staan. Rechts staan er twee waterstofatomen en links vier. Ook staan er rechts drie zuurstofatomen en links maar twee. Het aantal koolstofatomen klopt wel. Doordat er verschillen zijn tussen beide kanten klopt de totale balans niet. Volgens de wet van behoud van massa moet de massa aan beide kanten gelijk zijn. Van elk atoom moet er vóór de pijl evenveel zijn als na de pijl.
Een goede strategie hiervoor is om te kijken naar welke atomen er aan de linkerkant te veel zijn en dat vervolgens te compenseren aan de rechterkant. In dit geval zien we twee waterstofatomen te veel vóór de pijl. Daarom moeten er na de pijl niet één, maar twee watermoleculen staan:
Reactievergelijking verbranding methaan - deels kloppend
Wanneer de balans dan opnieuw wordt opgemaakt, staan er aan de linkerkant nog twee zuurstofatomen en aan de rechterkant vier (twee van CO2 en twee van 2H2O). Er moeten aan de linkerkant twee zuurstofatomen bij, oftewel een zuurstofmolecuul:
Reactievergelijking verbranding methaan - correct
Nu klopt de reactievergelijking weer.
kloppende fotosynthese in molecuulformule
fotosynthese in moleculen weergegeven

Slide 15 - Diapositive

Cet élément n'a pas d'instructions

Stappenplan

  • Schrijf het reactieschema op in woorden
  • Vervang de woorden door symbolen
  • Schrijf van elk soort atoom het aantal op, voor de pijl
  • Schrijf van elk soort atoom het aantal op, na de pijl
  • Pas het aantal atomen aan door de coëfficiënt te veranderen
  • Controleer of voor en na de pijl evenveel van elk atoomsoort
    aanwezig is.



Wat is de reactievergelijking van de verbranding van methaan?

Slide 16 - Diapositive

Reactievergelijking
In een reactievergelijking worden de stoffen weergegeven in formulevorm.
Voor de verbranding van koolstof ziet de reactievergelijking er als volgt uit:
Omdat er tijdens een chemische reactie geen atomen gemaakt of vernietigd worden, moeten we ervoor zorgen dat er voor en na de pijl evenveel atomen van elke atoomsoort staan. In de bovenstaande reactievergelijking is dit het geval.
Is dit niet het geval, ga dan als volgt te werk:
Schrijf op hoeveel atomen je aan beide kanten van de vergelijking hebt.
Begin met de atomen in evenwicht te brengen. Dit doe je door voor de molecuulformule een cijfer te zetten (ook wel coëfficiënt genoemd).
Het is hierbij het handigst om te beginnen met een atoomsoort die in het minst aantal moleculen voorkomt en te eindigen met een molecuul dat maar één atoomsoort bevat.
 
Een belangrijke reactievergelijking in onze sector Fotosynthese
Maak deze reactievergelijking kloppend, gebruik het stappenplan!

Slide 17 - Diapositive

Een belangrijk scheikundig proces binnen de landbouw is de fotosynthese. Fotosynthese is het proces waarbij planten water en koolstofdioxide onder invloed van energie uit licht omzetten in zuurstof en glucose.
De bruto chemische reactie voor fotosynthese is:
                                                                 .. H2O + .. CO2 + licht → C6H12O6 (glucose) + .. O2 + .. H2O.
Maak de bovenstaande reactievergelijking kloppend.
Let op: Controleer bij de docent of je het juiste antwoord hebt gegeven, want deze formule kan terugkomen in de toets.

KLASSIKAAL OP BORD BESPREKEN

De fotosynthese is dus voltooid: 6 CO2 + 6 H2O + energie --> C6H12O6 + 6 O2
Maak de reactievergelijking kloppend
...CO2+...H2O --> C6 H12 O6+...O2

Slide 18 - Question ouverte

6CO2+6H2O+zonlicht-->C6H12O6+6O2
Een belangrijke reactievergelijking in onze sector Fotosynthese
Maak deze reactievergelijking kloppend, gebruik het stappenplan!

Slide 19 - Diapositive

Een belangrijk scheikundig proces binnen de landbouw is de fotosynthese. Fotosynthese is het proces waarbij planten water en koolstofdioxide onder invloed van energie uit licht omzetten in zuurstof en glucose.
De bruto chemische reactie voor fotosynthese is:
                                                                 .. H2O + .. CO2 + licht → C6H12O6 (glucose) + .. O2 + .. H2O.
Maak de bovenstaande reactievergelijking kloppend.
Let op: Controleer bij de docent of je het juiste antwoord hebt gegeven, want deze formule kan terugkomen in de toets.

KLASSIKAAL OP BORD BESPREKEN

De fotosynthese is dus voltooid: 6 CO2 + 6 H2O + energie --> C6H12O6 + 6 O2
Ik begrijp hoe ik een reactievergelijking kloppend maak
ja, ik snap het
redelijk, ik moet nog wel oefenen
ik vind het moeilijk
ik snap er niets van
help! ik heb meer uitleg nodig

Slide 20 - Sondage

Cet élément n'a pas d'instructions

CO2
N
Cl
CaO
H2O
CO
Koolstofdioxide
Calciumoxide
Water
Koolmonoxide
Chloor
Stikstof

Slide 21 - Question de remorquage

Cet élément n'a pas d'instructions

Bodemanalyseformulier: Wat betekent "plant beschikbaar"?
A
geeft de verwachte hoeveelheid weer. die het komend jaar plant beschikbaar maakt vanuit de bodemvoorraad door het bodemleven
B
geeft de verhouding aan tussen twee elementen.
C
de waarden die zijn gebaseerd op landelijke metingen per grondsoort en sector zoals tuin-/akkerbouw of grasland
D
geeft de hoeveelheid aan die de plant direct tot zijn beschikking heeft en die direct kan worden opgenomen.

Slide 22 - Quiz

D
Bodemanalyseformulier: Wat betekent "leverend vermogen"?
A
geeft de verwachte hoeveelheid weer. die het komend jaar plant beschikbaar maakt vanuit de bodemvoorraad door het bodemleven
B
geeft de verhouding aan tussen twee elementen.
C
de waarden die zijn gebaseerd op landelijke metingen per grondsoort en sector zoals tuin-/akkerbouw of grasland
D
geeft de hoeveelheid aan die de plant direct tot zijn beschikking heeft en die direct kan worden opgenomen.

Slide 23 - Quiz

A
Bodemanalyseformulier: Wat betekent "ratio"?
A
geeft de verwachte hoeveelheid weer. die het komend jaar plant beschikbaar maakt vanuit de bodemvoorraad door het bodemleven
B
geeft de verhouding aan tussen twee elementen.
C
de waarden die zijn gebaseerd op landelijke metingen per grondsoort en sector zoals tuin-/akkerbouw of grasland
D
geeft de hoeveelheid aan die de plant direct tot zijn beschikking heeft en die direct kan worden opgenomen.

Slide 24 - Quiz

B
Bodemanalyseformulier: Wat betekent "streeftraject"?
A
geeft de verwachte hoeveelheid weer. die het komend jaar plant beschikbaar maakt vanuit de bodemvoorraad door het bodemleven
B
geeft de verhouding aan tussen twee elementen.
C
de waarden die zijn gebaseerd op landelijke metingen per grondsoort en sector zoals tuin-/akkerbouw of grasland
D
geeft de hoeveelheid aan die de plant direct tot zijn beschikking heeft en die direct kan worden opgenomen.

Slide 25 - Quiz

C
Heeft positief effect op productie en op benutting meststoffen
Betere oplosbaarheid en daardoor betere benutting meststoffen
Deze waarde heeft invloed op de beschikbaarheid van meststoffen
Vloeibare meststof onder droge omstandigheden
Vochtvoorziening
Zuurgraad van de bodem (pH)

Slide 26 - Question de remorquage

Vloeibare mest = de oplosbaarheid van messtoffen en daaardoor betere benutting

vochtvoorziening = positief effect op productie en benutting meststoffen

pH = beschikbaarheid meststoffen

Wat is de scheikundige formule voor Calcium?

Slide 27 - Question ouverte

Cet élément n'a pas d'instructions

Wat is de scheikundige formule voor fosfor?

Slide 28 - Question ouverte

Cet élément n'a pas d'instructions

Wat is de scheikundige formule voor kalium?

Slide 29 - Question ouverte

Cet élément n'a pas d'instructions

Wat is de scheikundige formule voor koolstof?

Slide 30 - Question ouverte

Cet élément n'a pas d'instructions

Welk element heeft het symbool Mg?

Slide 31 - Question ouverte

Cet élément n'a pas d'instructions

Wat is de scheikundige formule voor stikstof?

Slide 32 - Question ouverte

Cet élément n'a pas d'instructions

Welk element heeft het symbool H?

Slide 33 - Question ouverte

Cet élément n'a pas d'instructions

Welk element heeft het symbool O?

Slide 34 - Question ouverte

Cet élément n'a pas d'instructions