Chapter 4: Squares and square roots prior knowledge

Good morning!
Schedule: 
  • Chapter 4 learning goals 
  • Prior knowledge learning goals
  • Squares 
  • Work on your homework 
1 / 17
suivant
Slide 1: Diapositive
WiskundeMiddelbare schoolhavo, vwoLeerjaar 2

Cette leçon contient 17 diapositives, avec quiz interactifs et diapositives de texte.

time-iconLa durée de la leçon est: 40 min

Éléments de cette leçon

Good morning!
Schedule: 
  • Chapter 4 learning goals 
  • Prior knowledge learning goals
  • Squares 
  • Work on your homework 

Slide 1 - Diapositive

timer
2:00
Squares and
square roots

Slide 2 - Carte mentale

Chapter 4: squares and square roots
At the end of the chapter I can: 
- explain if the graph of a quadratic function is a smiley or a frowny parabola
- calculate with square roots 
- simplify square roots 
- work with square roots in functions 
- write square roots as powers 
- explain what rational and irrational numbers are 


Slide 3 - Diapositive

Prior knowledge: squares 
At the end of this lesson I can: 
- calculate the square of any number
- name the order of operations including squares
-calculate y for quadratic functions 
- draw the graph of a quadratic function

Slide 4 - Diapositive

We say: "The square of 8 is 64"

           =   "8 squared" 
                        or 
          "8 to the power of 2"

82=88=64
We can calculate          without a calculator!!
82
Theory A: basic calculations with squares 
1102
We know: 

Now:                   12 100

And:                    1,21


112=121
1102=
1.12=
When you square a number with one zero at the end,
The answer gets 2 zeros at the end.
When the komma is moved one place
The komma in the square is moved 2 places

Slide 5 - Diapositive

Match the answers with the problems
72=
72=
(7)2=
timer
0:50
49
-49
49

Slide 6 - Question de remorquage


202=
timer
0:40
A
4
B
4000
C
0,4
D
400

Slide 7 - Quiz


0.62=
timer
0:40
A
36
B
3,6
C
0,36
D
360

Slide 8 - Quiz

Theory B: Order of operations
1. 

2.

3. 

4.
timer
1:30
Calculate inside the brackets 
Evaluate powers/squares
Multiply and divide from left to right
Add and substract from left to right

Slide 9 - Question de remorquage

Theory C: Quadratic functions
In a function you can replace x by any number! 
                                     is a quadratic function. 
For x = 6, we get 


For x =    , we get 
y=3x2+4
y=3(6)2+4=336+4
=108+4=104
43
y=3(43)2+4=3169+4
=1627+4=1627+14=1627+1664
=37

Slide 10 - Diapositive

Theory C: Quadratic functions
How to draw the graph of a quadratic function:
I want to draw the graph of 
1. Make a table



2. This gives us the points: (-2,2), (-1,-1), (0,-2), (1,-1), (2,2)

y=x22
x
-2
-1
0
1
2
y
2
-1
-2
-1
2

Slide 11 - Diapositive

Theory C: Quadratic functions


3. We draw the points in a coordinate plane.
4. We draw a smooth curve through the points.


x
-2
-1
0
1
2
y
2
-1
-2
-1
2

Slide 12 - Diapositive

Consider the function
Calculate y for x = -5
y=2x2+3
timer
2:00

Slide 13 - Question ouverte

Slide 14 - Diapositive

Take out your diaries!
Homework: 
h2f                  p. 136-137: #2a-f, 4, 5a-f, 6, 7, 8a
This is homework for Monday 25-1-2021

Slide 15 - Diapositive

Prior knowledge: squares 
At the end of this lesson I can: 
- calculate the square of any number
- name the order of operations including squares
- calculate y for quadratic functions 
- draw the graph of a quadratic function

Slide 16 - Diapositive

How many learning goals did you achieve today?
1
2
3
4

Slide 17 - Sondage