H11.3 Windenergie + 11.4 WATERKRACHT

H11.3 Windenergie
1 / 24
suivant
Slide 1: Diapositive
NatuurkundeMiddelbare schoolvmbo tLeerjaar 4

Cette leçon contient 24 diapositives, avec diapositives de texte et 1 vidéo.

time-iconLa durée de la leçon est: 100 min

Éléments de cette leçon

H11.3 Windenergie

Slide 1 - Diapositive

Lesplanning
Lesuur 1: 
Uitleg en aantekeningen 11.3

Lesuur 2: 
uitleg en aantekeningen 11.4

Slide 2 - Diapositive

Leerdoelen 11.3
11.3.1 Je kunt voorbeelden geven van hoe bewegingsenergie praktisch wordt gebruikt.
11.3.2 Je kunt berekeningen uitvoeren met bewegingsenergie, massa en snelheid.
11.3.3 Je kunt benoemen welke energie-omzetting plaatsvindt in een windturbine.
11.3.4 Je kunt een eenvoudige manier beschrijven om een wisselspanning op te wekken.
11.3.5 Je kunt uitleggen hoe de wisselspanning van een fietsdynamo ontstaat.
11.3.6 Je kunt uitleggen wat wordt bedoeld met het piekvermogen van een windturbine.

Slide 3 - Diapositive

Bewegingsenergie
Bewegingsenergie:
Energie die bewegende dingen hebben als gevolg van het feit dat ze bewegen.
Met een windmolen kun je die bewegingsenergie benutten.
Hoe sneller iets beweegt, des te groter is de hoeveelheid
bewegingsenergie.

Slide 4 - Diapositive

Bewegingsenergie
De hoeveelheid bewegingsenergie hangt niet alleen af van de snelheid; de massa speelt ook een rol.
Hoe groter de massa, des te groter is de hoeveelheid bewegingsenergie. 
Bewegingsenergie ook wel kinetische energie genoemd.

bewegingsenergie = 0,5 × massa × snelheid in het kwadraat
Of in symbolen:
Ek = 0,5 ∙ m ∙ v2


Slide 5 - Diapositive

Formule Kinetische energie
Kinetische energie is hetzelfde als bewegingsenergie!

Slide 6 - Diapositive

Even oefenen!
Antwoord
Ek=0,5 . 4,6 . 5^2       
Ek= 57,5 (J)

Slide 7 - Diapositive

Slide 8 - Vidéo

Maximaal vermogen windturbine

Slide 9 - Diapositive

Slide 10 - Lien

De fietsdynamo
 Een permanente magneet magnetiseert een kern die van weekijzer is gemaakt. Dat is ijzer dat je gemakkelijk magnetisch kunt maken. Als je er een magneet bij houdt, wordt het snel magnetisch. Als je de magneet weghaalt, is de magnetisering even snel weer verdwenen. Als de dynamo wordt aangedreven, begint de magneet te draaien.  Daardoor wordt het weekijzer steeds op een andere manier gemagnetiseerd.

Slide 11 - Diapositive

Aan de slag
Lees 11.3 eerst zelf helemaal door.
Maak daarna de opgaves


Volgende les 11.4 

Slide 12 - Diapositive

11.4 Waterkracht

Slide 13 - Diapositive

Leerdoelen
11.4.1 Je kunt uitleggen hoe een waterkrachtcentrale zwaarte-energie omzet in elektrische energie.
11.4.2 Je kunt berekeningen uitvoeren met zwaarte-energie, massa en hoogte.
11.4.3 Je kunt in berekeningen het verband tussen zwaarte-energie en bewegingsenergie toepassen.
11.4.4 Je kunt uitleggen op welke vier punten je energiebronnen met elkaar kunt vergelijken.
11.4.5 Je kunt voor- en nadelen noemen van de energiebronnen die in Nederland worden gebruikt.

Slide 14 - Diapositive

Slide 15 - Diapositive

zwaarte-energie

Slide 16 - Diapositive

Voorbeeld
Remco staat op een berg van 200 meter hoog . Hij laat een steen van de berg afrollen. De massa van de steen is 2,0 kg. 
De valversnelling is op aarde altijd 9,81 m/s^2. 

Bereken de zwaarte energie van deze steen

Slide 17 - Diapositive

Jan piet staat op een berg van 200 meter hoog . Hij laat een steen van de berg afrollen. De massa van de steen is 2,0 kg.
De valversnelling is op aarde altijd 9,81 m/s^2.

Bereken de zwaarte energie van deze steen

h = 200 m
m = 2,0 kg
g = 9,81 m/s^2

Ez = m x g x h

Ez = 2 x 9,81 x 200 
Ez = 3924 J

Slide 18 - Diapositive

Zwaarte-energie/ hoogte-energie
  1. Als iets zich op hoogte bevind, heeft het zwaarte-energie
  2. Wanneer het object valt, wordt de zwaarte-energie omgezet in bewegingsenergie
  3. Wanneer het object de grond raakt, is de zwaarte-energie 0 J

Slide 19 - Diapositive

Wet van behoud van energie
Jan piet staat op een berg. Hij laat een steen van de berg afrollen. De zwaarte energie van deze steen is 3924 J. 
Deze energie wordt omgezet in bewegingsenergie. 
Dus: 
Ez = Ek
m x g x h = 0,5 x m x v^2

Slide 20 - Diapositive

Een skater staat op een helling van 5 meter boven de grond. De massa van de skater is 50 kg. 
Bereken de eindsnelheid van de skater. 

De valversnelling is 9,81 m/s^2 -> 10!

Slide 21 - Diapositive

Een skater staat op een helling van 5 meter boven de grond. De massa van de skater is 50 kg.

Bereken de eindsnelheid van de skater.
De valversnelling is 9,81 m/s^2

h= 5 m
m = 50 kg
g = 9,81 m/s^2 (10) 

Ez = mgh
Ek = 0,5mv^2

Ez = Ek

Slide 22 - Diapositive

h= 5 m
m = 50 kg
g = 9,81 m/s^2 (10)
Ez = Ek
50 x 10 x 5 = 0,5 x 50 x v^2
2500 = 25v^2
1v^2 = 1000  

v = √1000
v = 31,62 m/s


Slide 23 - Diapositive

Ga voor jezelf oefenen


Maak de opgaves van 11.3 en 11.4
Groot deel van je examen dus echt veel oefenen!!!!!

Slide 24 - Diapositive