Qu'est-ce que LessonUp
Rechercher
Canaux
Connectez-vous
S'inscrire
‹
Revenir à la recherche
Resultant force hyperlearning
Resultant Force
Hyperlearning
1 / 48
suivant
Slide 1:
Diapositive
Science
Upper Secondary (Key Stage 4)
GCSE
Cette leçon contient
48 diapositives
, avec
quiz interactifs
,
diapositives de texte
et
1 vidéo
.
La durée de la leçon est:
30 min
Commencer la leçon
Partager
Imprimer la leçon
Éléments de cette leçon
Resultant Force
Hyperlearning
Slide 1 - Diapositive
9
Slide 2 - Vidéo
00:00
What is the resultant force for terminal velocity?
Slide 3 - Question ouverte
00:06
The downwards arrow represents which of the following forces?
A
weight
B
tension
C
friction
D
normal contact
Slide 4 - Quiz
00:09
What part of a vector quantity is shown by the arrow head?
A
magnitude
B
size
C
action
D
direction
Slide 5 - Quiz
00:18
The resultant force is the single force that has the same effect as..
A
all the individual forces acting together
B
all the individual forces multiplied together
C
all the individual forces against each other
D
all the individual forces opposing each other
Slide 6 - Quiz
00:26
What sum was done to calculate the resultant force on the rocket?
Slide 7 - Question ouverte
00:29
What do you think the resultant force is if the forces actin on an object are balanced?
A
100N
B
-10N
C
0
D
0N
Slide 8 - Quiz
00:40
T of F: If the resultant force on an object is 0N then the object will always be stationary
Slide 9 - Question ouverte
00:56
Which force opposes the skydivers weight as they are falling?
A
gravity
B
driving force
C
air resistance
D
friction
Slide 10 - Quiz
01:00
At terminal velocity when the resultant force on teh skydiver is zero, what word will be used to describe his speed?
A
constant
B
accelerating
C
negative
D
instant
Slide 11 - Quiz
What are you going to learn?
In this lesson you're going to learn how to . . .
1
2
3
calculate resultant force
use resultant force to describe the motion of the object
apply your learning
Slide 12 - Diapositive
Names of forces
Driving or applied force (thrust)
Weight
Gravity
Normal contact
Drag forces; Friction
, Air resistance, Water resistance
Upthrust (buoyancy)
Tension
Magnetic
Electrostatic
Forces key facts
Measured using a Newton meter
Measured in Newtons (N)
Represented by an arrow on a diagram to show direction and size of force
Act on objects and can change the speed, direction or shape
Can be contact or non-contact
In opposing pairs can be balanced or unbalanced
Slide 13 - Diapositive
What is the name of these pieces of measuring equipment?
Slide 14 - Question ouverte
Resultant force
Calculating for single pairs of forces
Pointing the same direction add together
Pointing in opposite directions subtract
Slide 15 - Diapositive
What is the sum for the resultant force on this cart?
Slide 16 - Question ouverte
What is the calculation for the resultant force in this cyclist?
Slide 17 - Question ouverte
What calculation for the resultant force acting on the cup?
Slide 18 - Question ouverte
Write the calculation for resultant force on this cart.
Slide 19 - Question ouverte
Resultant force
Step 1
is to calculate the resultant force
Step 2
is to use the calculated value to decide what is happening to the object that the forces are acting on
Slide 20 - Diapositive
Worked examples
750N
-
500N
=
250N
to the right
400N
-
400N
=
0N
stationary or constant speed
500N
-
300N
=
200N
to the left OR
300N
-
500N
=
-200N
500N
-
500N
=
0N
stationary or constant speed
1000N
-
500N
=
500N
to the right
Slide 21 - Diapositive
What is the resultant force on the box?
Slide 22 - Question ouverte
What is the resultant force on the box?
Slide 23 - Question ouverte
What is the resultant force on the car?
Slide 24 - Question ouverte
What is the resultant force on the ball?
Slide 25 - Question ouverte
Calculate the resultant force.
Slide 26 - Question ouverte
Resultant force
More than one pair of forces.
Starting simple:
One pair is balanced (340N - 340N) so resultant force = 0N
2nd pair is unbalanced (550N - 230N) so resultant force = 320N upwards
Slide 27 - Diapositive
Calculate the resultant force on the box
Slide 28 - Question ouverte
Calculate the resultant force on the box
Slide 29 - Question ouverte
Calculate the resultant force on the box.
Slide 30 - Question ouverte
Calculate
Slide 31 - Carte mentale
Calculate
Slide 32 - Carte mentale
Compare
Slide 33 - Carte mentale
Describe
Slide 34 - Carte mentale
Calculate
Slide 35 - Carte mentale
Calculate
and
Compare
Slide 36 - Carte mentale
Describe
and
explain
Slide 37 - Carte mentale
Congratulations. You just finished the resultant forces lesson!
🥳
Slide 38 - Diapositive
Need help?
Video
Watch these
short videos explaining resultant forces:
https://www.youtube.com/watch?v=PL8ATKipoB4
https://www.youtube.com/watch?v=YGGxf6cp3Lo
Support
Go to a revision website to spend more time learning:
https://www.elevise.co.uk/g-a-cst-p5-home.html
https://senecalearning.com/en-GB/
Slide 39 - Diapositive
What is the force that pulls objects towards each other?
A
Magnetism
B
Gravity
C
Tension
D
Friction
Slide 40 - Quiz
Who formulated the law of universal gravitation?
A
Galileo Galilei
B
Isaac Newton
C
Albert Einstein
D
Nikola Tesla
Slide 41 - Quiz
What happens to the force of gravity between two objects when the distance between them increases?
A
Disappears
B
Decreases
C
Remains constant
D
Increases
Slide 42 - Quiz
What is the formula for gravitational potential energy?
A
F=ma
B
P=IV
C
mgh
D
E=mc^2
Slide 43 - Quiz
In which direction does gravitational potential energy increase?
A
sideways
B
backward
C
downward
D
upward
Slide 44 - Quiz
What is the SI unit for gravitational potential energy?
A
volt
B
joule
C
ampere
D
watt
Slide 45 - Quiz
What is upthrust also known as?
A
Gravitational pull
B
Centripetal force
C
Frictional force
D
Buoyant force
Slide 46 - Quiz
What causes upthrust?
A
Expansion of solids
B
Displacement of fluid
C
Increase in temperature
D
Magnetic force
Slide 47 - Quiz
What effect does upthrust have on an object in a fluid?
A
It decreases the volume
B
It reduces the apparent weight
C
It changes the color
D
It increases the density
Slide 48 - Quiz
Plus de leçons comme celle-ci
Resultant force hyperlearning
Novembre 2022
- Leçon avec
39 diapositives
Science
Upper Secondary (Key Stage 4)
GCSE
Speed
Décembre 2022
- Leçon avec
39 diapositives
Science
Lower Secondary (Key Stage 3)
Homework - Terminal velocity, Newton's 1st law
Avril 2024
- Leçon avec
21 diapositives
Science
Lower Secondary (Key Stage 3)
Forces in Action: Contact and Non-contact Forces
Novembre 2023
- Leçon avec
13 diapositives
Physics
Lower Secondary (Key Stage 3)
Intro to Forces
Juillet 2024
- Leçon avec
30 diapositives
Mechanical principles
Further Education (Key Stage 5)
Forces around you
Février 2023
- Leçon avec
20 diapositives
English
2nd Grade
Balanced and Unbalanced Forces
Février 2022
- Leçon avec
44 diapositives
Physics
Secondary Education
Age 13
2.08 &2.09 Kinetic and Potential Energy
Octobre 2022
- Leçon avec
40 diapositives
Kinetic and Potential Energy
6th Grade