Qu'est-ce que LessonUp
Rechercher
Canaux
Connectez-vous
S'inscrire
‹
Revenir à la recherche
13.1 Voorkennis Limieten
13.1 Voorkennis Limieten
1 / 26
suivant
Slide 1:
Diapositive
Wiskunde
Middelbare school
vwo
Leerjaar 6
Cette leçon contient
26 diapositives
, avec
diapositives de texte
.
La durée de la leçon est:
45 min
Commencer la leçon
Partager
Imprimer la leçon
Éléments de cette leçon
13.1 Voorkennis Limieten
Slide 1 - Diapositive
Limieten, wat zijn dat?
Uit 4V, hebben we niet gebruikt:
Slide 2 - Diapositive
Wat is een limiet?
Verticale asymptoot
noemer=0
Horizontale asymptoot
?
f
(
x
)
=
x
1
Slide 3 - Diapositive
Wat is een limiet?
Horizontale asymptoot
f
(
x
)
=
x
1
x
→
∞
lim
x
1
=
0
Slide 4 - Diapositive
Wat is een limiet?
Dit is een standaardlimiet
x
→
∞
lim
x
1
=
0
Slide 5 - Diapositive
Wat is een limiet?
Dit is een standaardlimiet
x
→
∞
lim
x
1
=
0
x
→
∞
lim
x
5
=
5
⋅
x
→
∞
lim
x
1
=
5
⋅
0
=
0
Slide 6 - Diapositive
Wat is een limiet?
Dit is een standaardlimiet
x
→
∞
lim
x
1
=
0
x
→
∞
lim
x
2
1
=
0
Slide 7 - Diapositive
Wat is een limiet?
Dit is een standaardlimiet
x
→
∞
lim
x
n
a
=
x
→
−
∞
lim
x
n
a
=
0
Slide 8 - Diapositive
Wat is een limiet?
Horizontale asymptoot
g
(
x
)
=
x
2
+
3
2
x
2
−
5
x
x
→
∞
lim
x
2
+
3
2
x
2
−
5
x
Slide 9 - Diapositive
x
→
∞
lim
x
2
+
3
2
x
2
−
5
x
=
Slide 10 - Diapositive
x
→
∞
lim
1
+
x
2
3
2
−
x
5
=
x
→
∞
lim
x
2
+
3
2
x
2
−
5
x
=
Slide 11 - Diapositive
x
→
∞
lim
1
+
x
2
3
2
−
x
5
=
x
→
∞
lim
x
2
+
3
2
x
2
−
5
x
=
x
→
∞
lim
1
+
x
2
3
2
−
x
5
=
1
2
=
2
Later meer hierover!
Slide 12 - Diapositive
De limiet en de afgeleide:
De afgeleide geeft je de snelheid van een functie op een bepaald punt.
Hoewel...
Slide 13 - Diapositive
Differentiequotiënt bij een formule
Bereken het differentiequotiënt op het interval
f
(
x
)
=
x
2
−
5
x
+
6
[
−
1
,
2
]
Slide 14 - Diapositive
Snelheid op één moment
Benader de helling in het punt
gebruik
f
(
x
)
=
x
2
−
5
x
+
6
x
=
1
Δ
x
=
0
,
0
1
Slide 15 - Diapositive
Snelheid op één moment
Benader de helling in het punt
gebruik
f
(
x
)
=
x
2
−
5
x
+
6
x
=
1
Δ
x
=
0
,
0
1
d
x
d
y
=
0
,
0
1
f
(
a
+
0
,
0
1
)
−
f
(
a
)
Slide 16 - Diapositive
Snelheid op één moment
Benader de helling in het punt
gebruik
f
(
x
)
=
x
2
−
5
x
+
6
x
=
1
Δ
x
=
0
,
0
1
d
x
d
y
=
0
,
0
1
f
(
1
,
0
1
)
−
f
(
1
)
=
0
,
0
1
1
,
9
7
0
1
−
2
Slide 17 - Diapositive
Snelheid op één moment
Benader de helling in het punt
gebruik
f
(
x
)
=
x
2
−
5
x
+
6
x
=
1
Δ
x
=
0
,
0
1
d
x
d
y
=
0
,
0
1
f
(
1
,
0
1
)
−
f
(
1
)
=
0
,
0
1
1
,
9
7
0
1
−
2
=
−
2
,
9
9
Slide 18 - Diapositive
Dit kan ook met een functie!
f
(
x
)
=
3
x
2
+
2
x
Slide 19 - Diapositive
Dit kan ook met een functie!
f
(
x
)
=
3
x
2
+
2
x
f
′
(
x
)
=
h
→
0
lim
h
3
(
x
+
h
)
2
+
2
(
x
+
h
)
−
(
3
x
2
+
2
x
)
Slide 20 - Diapositive
Dit kan ook met een functie!
Werk de haakjes eens uit
f
′
(
x
)
=
h
→
0
lim
h
3
(
x
+
h
)
2
+
2
(
x
+
h
)
−
(
3
x
2
+
2
x
)
Slide 21 - Diapositive
Dit kan ook met een functie!
Werk de haakjes eens uit
f
′
(
x
)
=
h
→
0
lim
h
3
(
x
+
h
)
2
+
2
(
x
+
h
)
−
(
3
x
2
+
2
x
)
f
′
(
x
)
=
h
→
0
lim
h
3
x
2
+
6
h
x
+
3
h
2
+
2
x
+
2
h
−
3
x
2
−
2
x
Slide 22 - Diapositive
Dit kan ook met een functie!
Werk de haakjes eens uit
f
′
(
x
)
=
h
→
0
lim
h
3
(
x
+
h
)
2
+
2
(
x
+
h
)
−
(
3
x
2
+
2
x
)
f
′
(
x
)
=
h
→
0
lim
h
3
x
2
+
6
h
x
+
3
h
2
+
2
x
+
2
h
−
3
x
2
−
2
x
f
′
(
x
)
=
h
→
0
lim
h
6
h
x
+
3
h
2
+
2
h
Slide 23 - Diapositive
Dit kan ook met een functie!
Werk de haakjes eens uit
f
′
(
x
)
=
h
→
0
lim
h
3
(
x
+
h
)
2
+
2
(
x
+
h
)
−
(
3
x
2
+
2
x
)
f
′
(
x
)
=
h
→
0
lim
h
3
x
2
+
6
h
x
+
3
h
2
+
2
x
+
2
h
−
3
x
2
−
2
x
f
′
(
x
)
=
h
→
0
lim
h
6
h
x
+
3
h
2
+
2
h
=
f
′
(
x
)
=
h
→
0
lim
6
x
+
3
h
+
2
Slide 24 - Diapositive
Dit kan ook met een functie!
Nu mag je invullen h=0
f
′
(
x
)
=
h
→
0
lim
6
x
+
3
h
+
2
6
x
+
3
⋅
0
+
2
=
6
x
+
2
Slide 25 - Diapositive
Dit kan ook met een functie!
Dit hebben we nu bewezen met de limiet
f
(
x
)
=
3
x
2
+
2
x
f
′
(
x
)
=
6
x
+
2
Slide 26 - Diapositive
Plus de leçons comme celle-ci
2.2 CD
Septembre 2023
- Leçon avec
11 diapositives
Wiskunde
Middelbare school
havo
Leerjaar 4
Evaluatie periode 1 V6wisB
Octobre 2023
- Leçon avec
22 diapositives
Wiskunde
Middelbare school
vwo
Leerjaar 6
A4 WB H2 herhaling t/m paragraaf 3
Octobre 2024
- Leçon avec
34 diapositives
Wiskunde
Middelbare school
vwo
Leerjaar 4
6.3+6.4 hellingen benaderen en de afgeleide functie
Mars 2023
- Leçon avec
19 diapositives
Wiskunde
Middelbare school
havo
Leerjaar 4
H13 WisB standaardlimieten exp functies
Octobre 2023
- Leçon avec
24 diapositives
Wiskunde
Middelbare school
vwo
Leerjaar 6
4v afgeleide keuze
Janvier 2021
- Leçon avec
26 diapositives
Wiskunde
Middelbare school
vwo
Leerjaar 4
A4wiA H8-0 en H8-1
Mai 2020
- Leçon avec
22 diapositives
Wiskunde
Middelbare school
vwo
Leerjaar 4
H6.1 Raaklijnen en toppen
Mars 2022
- Leçon avec
44 diapositives
Wiskunde
Middelbare school
havo
Leerjaar 4