2TTO §6.5 Right, acute or obtuse 20-21

Which exercises should we discuss on the board?
1 / 11
suivant
Slide 1: Carte mentale
WiskundeMiddelbare schoolhavo, vwoLeerjaar 2

Cette leçon contient 11 diapositives, avec quiz interactif et diapositives de texte.

time-iconLa durée de la leçon est: 50 min

Éléments de cette leçon

Which exercises should we discuss on the board?

Slide 1 - Carte mentale

Right-, Acute- and Obtuse-angled triangles
We've learned that Pythagoras' theorem only works in right-angled triangles: the squares on the short sides are added up the same as the square on the hypotenuse.

That means if the squares on the short sides are NOT added up the square on the hypotenuse, we do NOT have a right-angled triangle.

Slide 2 - Diapositive

Right-, Acute- and Obtuse-angled triangles
What happens to the hypotenuse when we change the right angle?

Slide 3 - Diapositive

Right-, Acute- and Obtuse-angled triangles
                                            hypotenuse larger        hypotenuse smaller
                                            = larger angle                  = smaller angle

Slide 4 - Diapositive

Right-, Acute- and Obtuse-angled triangles
A triangle with one angle that is larger than 90
degrees is called an obtuse-angled triangle.



                              
                                           A triangle where all angles are smaller than 90
                                          degrees is called an acute-angled triangle.

Slide 5 - Diapositive

Right-, Acute- and Obtuse-angled triangles
When you are given a triangle with 3 known sides. You can use Pythagoras' theorem to calculate if it is a right-angled, acute-angled or obtuse-angled triangle.
1) Sketch the triangle
2) Use the two shorter sides to calculate the hypotenuse as if it was a right-angled triangle
3) Compare the results:
If the given third side is the same as the calculated hypotenuse, you have a right-angled triangle.
If the given third side is larger than the calculated hypotenuse, you have an obtuse-angled triangle.
If the given third side is smaller than the calculated hypotenuse, you have an acute-angled triangle.

Slide 6 - Diapositive

Slide 7 - Diapositive

Right-, Acute- and Obtuse-angled triangles
In triangle PQR, PQ = 6, QR = 11 and PR = 9.
What type of triangle is triangle PQR?
1) Sketch:                      

Slide 8 - Diapositive

Right-, Acute- and Obtuse-angled triangles
In triangle PQR, PQ = 6, QR = 11 and PR = 9.
What type of triangle is triangle PQR?
1) Sketch:                      

Slide 9 - Diapositive

Right-, Acute- and Obtuse-angled triangles
In triangle PQR, PQ = 6, QR = 11 and PR = 9.     2) Calculation: 
                                                                                                          3) Conclusion:

                                                                                                          QR is longer than what I
                                                                                                          calculated. Therefore the
                                                                                                          angle is larger than 90
                                                                                                         degrees. PQR is an
                                                                                                         obtuse-angled triangle.

What type of triangle is triangle PQR?
1) Sketch:                      

Slide 10 - Diapositive

Homework

Make T2, T5 and E8 a and b 

Slide 11 - Diapositive