UV - Van Gogh's friend (1)

UV:

Van Gogh's
friend
What is this lesson about?
A conservator-restorer may use UV light to examine paintings by Vincent van Gogh.
But why?
And how does it work?
Um... UV?
Sunlight sends a lot of different colours to us, but we can’t see all of those colours with the naked eye. Like ultraviolet (UV) and infrared. We do see all the colours between them, though.
1 / 14
volgende
Slide 1: Tekstslide
Art and designScience+2Primary EducationLower Secondary (Key Stage 3)Upper Secondary (Key Stage 4)

In deze les zitten 14 slides, met interactieve quizzen, tekstslides en 1 video.

time-iconLesduur is: 30 min

Introductie

Masterminds & Masterpieces – In this lesson, you’ll see how a conservator-restorer uses UV light to study Vincent van Gogh’s paintings closely. Then you’ll construct your own UV research light. (Age 10 - 12)

Instructies

A curious, inquisitive attitude is required for the conservation and management of art and also for science and technology in general. This lesson is part of the Masterminds & Masterpieces series and makes use of the cross-curricular added value of inquiry-based learning (experimenting, trying out, looking, comparing, etc.). Masterminds & Masterpieces is a collaboration between the Van Gogh Museum and ASML.

Materials
Sticky tape, scissors, rulers
Per student:
- an ice-lolly stick
- two strips of self-adhesive copper tape (around 10 cm in length) (online search term: ‘buy copper tape’)
- UV LED (online search term: ‘LED buy UV 5 mm’ or ‘LED kiwi UV 5 mm’)
- battery (button cell, CR 2032)
- foldback clip

Students are told during the lesson never to shine UV light, or any other kind of light, into their own or other people’s eyes.

Additional preparation
If the students aren’t quite sure who Vincent van Gogh was, watch the video Who Was Van Gogh?

Variations
- This lesson can be done before the lesson Van Gogh’s friend (2) (60 min.).
- For students who can handle slightly more difficult material, the related lessons for higher-level students can be used.

Instructies

Onderdelen in deze les

UV:

Van Gogh's
friend
What is this lesson about?
A conservator-restorer may use UV light to examine paintings by Vincent van Gogh.
But why?
And how does it work?
Um... UV?
Sunlight sends a lot of different colours to us, but we can’t see all of those colours with the naked eye. Like ultraviolet (UV) and infrared. We do see all the colours between them, though.

Slide 1 - Tekstslide

Use the first hotspot to discuss the subject of the lesson. The second hotspot is about UV. The colours that humans can see are the colours we can also see in a rainbow.
Where do you think we are?
What kind of machine is this?
What job are these people doing?
Who made this painting?
We’re in a conservation studio. This is where paintings are examined, restored and conserved. Conservation focuses on preserving the original work of art. This might involve restoration, which means repairing damage and the effects of ageing to restore the work to its original state .
It’s a very big microscope. You can use it to look at the paint from very close up.
These people are conservator-restorers. They examine and repair objects that have been damaged or are getting old, and they protect them from further damage. In this case, paintings.
This painting was made by Vincent van Gogh, a famous Dutch artist. He lived from 1853 to 1890.

Slide 2 - Tekstslide

Use the questions in this slide to activate the students’ previous knowledge and to encourage them to look closely at the photograph. The answers are in the hotspots beside each question. If necessary, you can emphasise the words in italics to help students develop their vocabulary.
conservator-restorer?
The conservator-restorer is a sort of doctor for paintings, who first examines what is wrong with the painting. A good conservator-restorer never just paints something extra. This one’s not very good, then...

Slide 3 - Tekstslide

Explain: One of the tasks of the Van Gogh Museum is to research and preserve Vincent van Gogh’s paintings – for now, but also for the future! A conservator-restorer will, for example, investigate whether a painting was made just by Vincent, or whether other people made later additions.

Slide 4 - Video

Length 3:41 min.
How does UV light help a
conservator-restorer?
You can use it to…
A
see an old layer of varnish
B
seal up cracks in the paint
C
change the colour of the paint
D
discover overpainting

Slide 5 - Quizvraag

Use the quiz and the drag-and-drop exercise to reflect on the video.
Were you watching carefully? Drag the pictures to the right boxes
Before the restoration work
After the restoration work

Slide 6 - Sleepvraag

Deze slide heeft geen instructies

How to make your own UV research light

Slide 7 - Tekstslide

Explain to the students that they’re going to construct a UV light. Go through the steps in the following slides together. The accompanying material includes a worksheet that explains all the actions step by step.
What do you need?
  • ice-lolly stick
  • self-adhesive copper tape 
  • UV LED
  • battery (button cell)
  • foldback clip
  • sticky tape
  • scissors
  • ruler
A button cell has a + side and a - side.
Remember that for later! 

Slide 8 - Tekstslide

Deze slide heeft geen instructies

Stick a strip of copper, about 10 cm long, to one side of the ice-lolly stick. Start at one end of the stick.
1.
Stick a shorter strip of copper, about 9 cm long, to the other side. Start at the same end of the stick.
2.

Slide 9 - Tekstslide

Explanation for step 1: the battery and the foldback clip will make contact with the copper strip on this side. Explanation for step 2: it’s important that the clamp doesn’t make contact with the shorter strip of copper.
Sticking tip!
When removing the protective layer from the copper tape, start with just a small piece. Then you can attach it to the ice-lolly stick bit by bit, starting at one end.

Slide 10 - Tekstslide

If you unroll copper tape all at once, it rolls up, and the curl of the copper often becomes tangled and sticks to itself. Demonstrate this handy way of making the copper adhere to the stick.
Fasten the LED to the end of the stick. The longer wire should be on the same side as the longer piece of copper.
Secure the wires with a piece of sticky tape.
3.

Slide 11 - Tekstslide

Deze slide heeft geen instructies

Use the foldback clip to attach the battery to the stick. The + side of the battery should be on the same side as the longer piece of copper.
Now there’s a ‘switch’ on the other side of the stick. You can use this to turn your UV research light on and off.
4.

Slide 12 - Tekstslide

It’s important for the switch that the clamp doesn’t make contact with the shorter piece of copper – otherwise the light will go on immediately.
When you flip the switch (the arm of the paperclip), the metal will touch the copper. The UV LED goes on – and your light is ready to use!
5.
circuit
Your UV research light works because of a circuit, a complete path around which an electric current can flow. In this case, the electric current comes from the little battery. Its positive side and its negative side are connected by the copper tape and the foldback clip, creating the circuit. Metals are very good conductors, because they allow electric current to pass through them easily.

Slide 13 - Tekstslide

Then ask the students to construct their own UV research lights. They can do this as a class by following the instructions on the board, or individually/in groups by using the worksheet (PDF; see accompanying material).
Ready?
Time to
experiment!
Don’t shine the UV light into your own eyes or anyone else’s!
Find a dark space and discover what happens under UV light!
Try experimenting with fingerprints, splashes of soap, toothpaste, glue sticks, banknotes and other objects.

Slide 14 - Tekstslide

Follow up this lesson with UV light: Van Gogh’s friend (2), or tell the students that you’re going to do this in another lesson. Draw the students’ attention to the hotspot with information about not shining UV light into eyes: ‘What do you think this icon means?’

Extra: Allow the students to discover individually or in groups what materials glow under UV light and then ask them to tell one another what they’ve found during a class discussion. More information about materials that glow under UV light can be found here.