H03 Sparen en lenen

H03 Sparen en lenen
1 / 29
volgende
Slide 1: Tekstslide
EconomieMiddelbare schoolhavo, vwoLeerjaar 3

In deze les zitten 29 slides, met tekstslides.

time-iconLesduur is: 45 min

Onderdelen in deze les

H03 Sparen en lenen

Slide 1 - Tekstslide

Lesdoelen
  • Je kunt uitleggen waarom sparen en lenen voorbeelden zijn van ruilen over de tijd 
  • Je kunt de mediaan bepalen van een reeks getallen
  • Je kunt het effect van inflatie uitleggen en berekenen 

Slide 2 - Tekstslide

Ruilen over de tijd: sparen 
  • Geld is een ruilmiddel 
  • Sparen is het niet uitgeven van een deel van je inkomsten. Je stelt je besteding uit
  • Rente is een vergoeding voor het uitlenen van geld

Slide 3 - Tekstslide

Ruilen over de tijd: lenen
  • Bij lenen kun je nu meer besteden, maar in de toekomst minder

Slide 4 - Tekstslide

3 redenen waarom je rente krijgt (hoort te krijgen) 
  1. Vergoeding voor ongemak: je kunt je geld nog niet uitgeven
  2. Vergoeding voor ter beschikking stellen aan derden: de bank leent je spaargeld uit tegen een hogere rente dan jij ontvangt
  3. Compensatie voor inflatie


Slide 5 - Tekstslide

Rente, inflatie en koopkracht 
Rente is een vergoeding voor het uitlenen van geld 





Als de rentevergoeding op je spaargeld lager is dan het inflatiepercentage daalt je koopkracht. 

Slide 6 - Tekstslide

Soorten spaarrekeningen 
  1. Direct opneembare spaarrekening
  2. Depositorekening; je geld staat voor een vooraf afgesproken periode vast. Eerder opnemen kan vaak wel, maar dan betaal je een boete


Slide 7 - Tekstslide

Mediaan
  • Wat is de mediaan van deze reeks van getallen? 1, 2, 7, 10, 15
  • Het middelste getal van een reeks getallen dus 7

  • Wat is de mediaan van deze reeks van getallen? 1, 2, 7, 9, 10, 15
  • Bij een even aantal getallen het gemiddelde van de twee middelste getallen dus (7+9)/2 = 8

  • Waarom gebruiken we soms mediaan in plaats van gemiddeld? 
  • Een gemiddelde geeft soms een vertekent beeld, wanneer er een uitschieter in de reeks getallen is

Slide 8 - Tekstslide

Check lesdoelen
  • Je kunt uitleggen waarom sparen en lenen voorbeelden zijn van ruilen over de tijd 
  • Je kunt de mediaan bepalen van een reeks getallen
  • Je kunt het effect van inflatie uitleggen en berekenen 

Slide 9 - Tekstslide

* aan de slag: maken 4 t/m 11 
of
* meedoen met extra uitleg procent sommen

Slide 10 - Tekstslide

Lesdoelen
  • Je kunt enkelvoudige intrest uitrekenen
  • Je kunt onderscheid maken tussen absolute en relatieve verandering
  • Je kunt procentuele veranderingen berekenen

Slide 11 - Tekstslide

Enkelvoudige rente 
  • Jaarrente 4% 
  • Wat is de rente per maand? 
  • 1/12 x 4% = 0,25% 

Slide 12 - Tekstslide

Enkelvoudige rente 
  • Jaarrente 3% 
  • Wat is de rente per maand? 
  • 1/12 x 3% = 0,25% 

  • rente per jaar omrekenen naar andere periode (kw/mnd/wk/dag)

  • Rente per jaar/ T 



Slide 13 - Tekstslide

Absolute vs. relatieve verandering




Procenten worden vaak gebruikt om relatieve veranderingen aan te geven
(3.21) In 2015 is het gemiddeld spaarbedrag per hoofd in China € 612, terwijl dat in Nederland € 4.835 bedraagt. In 2016 stijgt het gemiddelde spaarbedrag per hoofd in China met € 37,50 en in Nederland met € 80,80. 

Slide 14 - Tekstslide

Rekenen met procentuele verandering
Het aantal leerlingen op het HLZ is ten opzichte van vorig schooljaar met 2% gestegen. Er zijn nu 918 leerlingen. Hoeveel leerlingen waren er vorig jaar? 


Slide 15 - Tekstslide

Rekenen met procentuele verandering
Het aantal leerlingen op het HLZ is ten opzichte van vorig schooljaar met 2% gestegen. Er zijn nu 918 leerlingen. Hoeveel leerlingen waren er vorig jaar? 

We vergelijken met vorig jaar, je stelt het aantal leerlingen van vorig jaar daarom op 100%

Slide 16 - Tekstslide

Rekenen met procentuele verandering
Het aantal leerlingen op het HLZ is ten opzichte van vorig schooljaar met 2% gestegen. Er zijn nu 918 leerlingen. Hoeveel leerlingen waren er vorig jaar? 

We vergelijken met vorig jaar, je stelt het aantal leerlingen van vorig jaar daarom op 100%
leerlingen vorig jaar
100%
?
toename dit jaar
2%
?
leerlingen dit jaar
102%
918

Slide 17 - Tekstslide

Rekenen met procentuele verandering
Het aantal leerlingen op het HLZ is ten opzichte van vorig schooljaar met 2% gestegen. Er zijn nu 918 leerlingen. Hoeveel leerlingen waren er vorig jaar? 

We vergelijken met vorig jaar, je stelt het aantal leerlingen van vorig jaar daarom op 100%

918/ 102 x 100 = 900
leerlingen vorig jaar
100%
900
toename dit jaar
2%
18
leerlingen dit jaar
102%
918

Slide 18 - Tekstslide

aan de slag: maken 4 t/m 11

Slide 19 - Tekstslide

Enkelvoudige en samengestelde rente
  • Enkelvoudige rente: je ontvangt alleen rente over het door jou gestorte (begin-) bedrag 

  • Samengestelde rente: je ontvangt rente over het door jou gestorte (begin-) bedrag én over de ontvangen rente tot dat moment. We noemen dit ook wel rente op rente 

Slide 20 - Tekstslide

Rekenvoorbeeld samengestelde rente
Je hebt € 1.000 op je spaarrekening staan. Je krijgt 1% rente per jaar.  Welk bedrag heb je op je rekening staan na 3 jaar als er sprake is van samengestelde rente?

  • Na 1 jaar: € 1.000 x 1,01 = € 1.010
  • Na 2 jaar: € 1.010 x 1,01 = € 1.020,10 
  • Na 3 jaar: € 1.020,10 x 1,01 = € 1.030,30 

Slide 21 - Tekstslide

Sneller berekenen 
Je kunt de eindwaarde van een spaarbedrag bij samengestelde rente sneller berekenen met een formule 


(1 + i) is de groeifactor, waarbij i staat voor interest. 

i = de rente / 100 
bij 3% is i 3/100 = 0,03  
de groeifactor wordt dan 1 + 0,03 = 1,03 

De berekening in het voorbeeld wordt nu: eindkapitaal na 3 jaar = € 1.000 x 1,01^3 = € 1.030,30

Slide 22 - Tekstslide

Formule eindwaarde bij samengestelde rente
We schrijven de formule kortweg als 



Let op: wanneer er in een opgave gedurende de looptijd stortingen of onttrekkingen worden gedaan of wanneer de rente tussentijds wijzigt dan zul je de berekening moeten opknippen in de delen. 

Slide 23 - Tekstslide

Oefening
Ik zet vandaag € 1.000 op mijn spaarrekening tegen 4% samengestelde rente per jaar. 

Welk bedrag heb ik over 10 jaar opgebouwd? 

  • 1.000 x 1,04^10 = € 1.480,24 

Slide 24 - Tekstslide

Lesdoel
  • Je kunt de aflossingen en rente van een lening met gelijkblijvende (lineaire) aflossing berekenen

Slide 25 - Tekstslide

Voorbeeld
Sofie leent op 1 januari € 4.000 voor een nieuwe scooter van haar ouders tegen 5% rente per jaar. Ze spreken af dat Sofie de lening met gelijke bedragen zal aflossen over een periode van 4 jaar. Jaarlijks op 31 december zal Sofie de aflossing en de rente over het afgelopen jaar betalen. 

  • Bereken de jaarlijkse aflossing 
  • € 4.000/4 = € 1.000 
  • Bereken de te betalen rente aan het einde van het 1e jaar. 
  • 0,05 x € 4.000 = € 800 
  • Sofie betaalt in totaal € 1.800 aan het einde van het eerste jaar. 

Slide 26 - Tekstslide

Voorbeeld
Sofie leent op 1 januari € 4.000 voor een nieuwe scooter van haar ouders tegen 5% rente per jaar. Ze spreken af dat Sofie de lening met gelijke bedragen zal aflossen over een periode van 4 jaar. Jaarlijks op 31 december zal Sofie de aflossing en de rente over het afgelopen jaar betalen. 
  • Bereken de jaarlijkse aflossing 
  • € 4.000/4 = € 1.000 
  • Bereken de te betalen rente aan het einde van het 1e jaar. 
  • 0,05 x € 4.000 = € 800 
  • Sofie betaalt in totaal € 1.800 aan het einde van het eerste jaar. 

  • Door de aflossing van € 1.000 heeft Sofie aan het begin van het 2e jaar nog een schuld van € 3.000

Slide 27 - Tekstslide

Voorbeeld
Sofie leent op 1 januari € 4.000 voor een nieuwe scooter van haar ouders tegen 5% rente per jaar. Ze spreken af dat Sofie de lening met gelijke bedragen zal aflossen over een periode van 4 jaar. Jaarlijks op 31 december zal Sofie de aflossing en de rente over het afgelopen jaar betalen. 
  • Door de aflossing van € 1.000 heeft Sofie aan het begin van het 2e jaar nog een schuld van € 3.000

  • Bereken de te betalen rente aan het einde van het 2e jaar.
  • 0,05 x € 3.000 = € 600

  • Sofie betaalt in totaal € 1.600 aan het einde van het tweede jaar; de vaste aflossing van € 1.000 en de rente van € 600. 

Slide 28 - Tekstslide

Lineaire lening
Periodieke aflossing = lening/ aantal termijn 

Rente betaal je per periode achteraf, de hoogte van de te betalen rente bereken je in twee stappen:
  1. Schuldrest begin jaar n = lening - (n-1) x aflossing 
  2. Te betalen rente = rentepercentage x schuldrest 

Slide 29 - Tekstslide