Lesson 4 — current, voltage and resistance

Class layout – Science
1 / 31
volgende
Slide 1: Tekstslide
ScienceMiddelbare schoolhavoLeerjaar 2

In deze les zitten 31 slides, met tekstslides.

time-iconLesduur is: 45 min

Onderdelen in deze les

Class layout – Science

Slide 1 - Tekstslide

Class layout – Science

Slide 2 - Tekstslide

Chapter 9 Electricity

Slide 3 - Tekstslide

This lesson
  • Recap
  • series and parallel
  • Current, voltage & resistance
  • Ohms law

Slide 4 - Tekstslide

Electricity is: a flow of free electrons flowing from a negatively charged pole to a positively charged pole.

This flow of electrons is called: electric current. 
  • The symbol for electric current is: I
  • The unit of electric current is ampere (A)

1 ampere stands for 1 coulomb flowing by per second (1 coulomb per second).
  • 1 coulomb stands for 6.24 x 1018 electrons
  • Example: on average a current of 1,5 A flows through phone charging cable while it is charging. This mean 1,5 coulombs are flowing through that cable per second.

The formula to calculate current is: 



I=tQ
current=timecharge

Slide 5 - Tekstslide

 Currnet is measured with an ammeter

Slide 6 - Tekstslide

ammeter

Slide 7 - Tekstslide

Practice problem
In a school classroom there are approximately 9 LED lamps. At the end of the day after all the lamps have been turned off someone came back, because they forgot something. They turned the lamps on and took 2,5 minutes to find what they were looking for. Through one LED lamp flows a current of 30 mA. Calculate how much electric charge went through these 9 lamps during that time.

Slide 8 - Tekstslide

In a school classroom there are approximately 9 LED lamps. At the end of the day after all the lamps have been turned off someone came back, because they forgot something. They turned the lamps on and took 2,5 minutes to find what they were looking for. Through one LED lamp flows a current of 30 mA. Calculate how much electric charge went through these 9 lamps during that time.

Slide 9 - Tekstslide

In a school classroom there are approximately 9 LED lamps. At the end of the day after all the lamps have been turned off someone came back, because they forgot something. They turned the lamps on and took 2,5 minutes to find what they were looking for. Through one LED lamp flows a current of 30 mA. Calculate how much electric charge went through these 9 lamps during that time.
Given:
- 9 LED lamps
- turned on for 2,5 minutes (t = 150s)
- each with a current of 30 mA (I = 0,03 A)








Slide 10 - Tekstslide

In a school classroom there are approximately 9 LED lamps. At the end of the day after all the lamps have been turned off someone came back, because they forgot something. They turned the lamps on and took 2,5 minutes to find what they were looking for. Through one LED lamp flows a current of 30 mA. Calculate how much electric charge went through these 9 lamps during that time.
Given:
- 9 LED lamps
- turned on for 2,5 minutes (t = 150s)
- each with a current of 30 mA (I = 0,03 A)

Asked: How much electric charge went through these 9 lamps during that time.






Slide 11 - Tekstslide

In a school classroom there are approximately 9 LED lamps. At the end of the day after all the lamps have been turned off someone came back, because they forgot something. They turned the lamps on and took 2,5 minutes to find what they were looking for. Through one LED lamp flows a current of 30 mA. Calculate how much electric charge went through these 9 lamps during that time.
Given:
- 9 LED lamps
- turned on for 2,5 minutes (t = 150s)
- each with a current of 30 mA (I = 0,03 A)

Asked: How much electric charge went through these 9 lamps during that time.

Formula: 




Slide 12 - Tekstslide

In a school classroom there are approximately 9 LED lamps. At the end of the day after all the lamps have been turned off someone came back, because they forgot something. They turned the lamps on and took 2,5 minutes to find what they were looking for. Through one LED lamp flows a current of 30 mA. Calculate how much electric charge went through these 9 lamps during that time.
Given:
- 9 LED lamps
- turned on for 2,5 minutes (t = 150s)
- each with a current of 30 mA (I = 0,03 A)

Asked: How much electric charge went through these 9 lamps during that time.

Formula: 




I=tQ

Slide 13 - Tekstslide

In a school classroom there are approximately 9 LED lamps. At the end of the day after all the lamps have been turned off someone came back, because they forgot something. They turned the lamps on and took 2,5 minutes to find what they were looking for. Through one LED lamp flows a current of 30 mA. Calculate how much electric charge went through these 9 lamps during that time.
Given:
- 9 LED lamps
- turned on for 2,5 minutes (t = 150s)
- each with a current of 30 mA (I = 0,03 A)

Asked: How much electric charge went through these 9 lamps during that time.

Formula: 




I=tQ
Q=It

Slide 14 - Tekstslide

In a school classroom there are approximately 9 LED lamps. At the end of the day after all the lamps have been turned off someone came back, because they forgot something. They turned the lamps on and took 2,5 minutes to find what they were looking for. Through one LED lamp flows a current of 30 mA. Calculate how much electric charge went through these 9 lamps during that time.
Given:
- 9 LED lamps
- turned on for 2,5 minutes (t = 150s)
- each with a current of 30 mA (I = 0,03 A)

Asked: How much electric charge went through these 9 lamps during that time.

Formula: 

Calculation:


I=tQ
Q=It

Slide 15 - Tekstslide

In a school classroom there are approximately 9 LED lamps. At the end of the day after all the lamps have been turned off someone came back, because they forgot something. They turned the lamps on and took 2,5 minutes to find what they were looking for. Through one LED lamp flows a current of 30 mA. Calculate how much electric charge went through these 9 lamps during that time.
Given:
- 9 LED lamps
- turned on for 2,5 minutes (t = 150s)
- each with a current of 30 mA (I = 0,03 A)

Asked: How much electric charge went through these 9 lamps during that time.

Formula: 

Calculation:


I=tQ
Q=It
Q1lamp=0.03150=4.5C

Slide 16 - Tekstslide

In a school classroom there are approximately 9 LED lamps. At the end of the day after all the lamps have been turned off someone came back, because they forgot something. They turned the lamps on and took 2,5 minutes to find what they were looking for. Through one LED lamp flows a current of 30 mA. Calculate how much electric charge went through these 9 lamps during that time.
Given:
- 9 LED lamps
- turned on for 2,5 minutes (t = 150s)
- each with a current of 30 mA (I = 0,03 A)

Asked: How much electric charge went through these 9 lamps during that time.

Formula: 

Calculation:


I=tQ
Q=It
Q1lamp=0.03150=4.5C
Qalllamps=4.5C9=40.5C

Slide 17 - Tekstslide

Series and parallel circuits

Slide 18 - Tekstslide

Slide 19 - Tekstslide

Slide 20 - Tekstslide

Slide 21 - Tekstslide

Slide 22 - Tekstslide

Slide 23 - Tekstslide

Slide 24 - Tekstslide

Current (I):
  • The amount of charge flowing by per second (coulombs/ second).
  • Expressed in amperes (A)




Slide 25 - Tekstslide

Current (I):
  • The amount of charge flowing by per second (coulombs/ second).
  • Expressed in amperes (A)

Voltage (U):
  • The difference in electrical potential energy between two points in a circuit.
  • Expressed in volts (V)


Slide 26 - Tekstslide

Current (I):
  • The amount of charge flowing by per second (coulombs/ second).
  • Expressed in amperes (A)

Voltage (U):
  • The difference in electrical potential energy between two points in a circuit.
  • Expressed in volts (V)

Resistance (R):
  • The amount something resists the flow of current.
  • Expressed in ohms (Ω)

Slide 27 - Tekstslide

The voltage over a power source gest turned up. The resistance of the circuit connected to it stays the same. The current in the circuit will increase/ stay the same/ decrease.
A resistor gets added to a circuit causing the resistance to increase. the voltage over the circuit stays the same. The current in the circuit will increase/ stay the same/ decrease.

Slide 28 - Tekstslide

Slide 29 - Tekstslide

Ohm's law
Current=ResistanceVoltage
I=RU
quantity
unit
Current (I)
Ampere (A)
Voltage (U)
Volt (V)
Resistance (R)
Ohm (Ω)

Slide 30 - Tekstslide

A electrician is working on a series circuit with a current of 0,83 A flowing through it and a total resistance of 8 Ω. He adds two resistors of 4 Ω each to this circuit. After this he doubles the voltage over the circuit. 

What will happen to the current flowing through the circuit after this?

Slide 31 - Tekstslide