2TTO §6.5 Right, acute or obtuse 24-25

Which exercises should we discuss on the board?
1 / 13
volgende
Slide 1: Woordweb
WiskundeMiddelbare schoolhavo, vwoLeerjaar 2

In deze les zitten 13 slides, met interactieve quiz en tekstslides.

time-iconLesduur is: 50 min

Onderdelen in deze les

Which exercises should we discuss on the board?

Slide 1 - Woordweb

Right-, Acute- and Obtuse-angled triangles
We've learned that Pythagoras' theorem only works in right-angled triangles: the squares on the short sides are added up the same as the square on the hypotenuse.

That means if the squares on the short sides are NOT added up the square on the hypotenuse, we do NOT have a right-angled triangle.

Slide 2 - Tekstslide

Right-, Acute- and Obtuse-angled triangles
What happens to the hypotenuse when we change the right angle?

Slide 3 - Tekstslide

Right-, Acute- and Obtuse-angled triangles
                                            hypotenuse larger        hypotenuse smaller
                                            = larger angle                  = smaller angle

Slide 4 - Tekstslide

Right-, Acute- and Obtuse-angled triangles
A triangle with one angle that is larger than 90
degrees is called an obtuse-angled triangle.



                              
                                           A triangle where all angles are smaller than 90
                                          degrees is called an acute-angled triangle.

Slide 5 - Tekstslide

Slide 6 - Tekstslide

Right-, Acute- and Obtuse-angled triangles
When you are given a triangle with 3 known sides. You can use Pythagoras' theorem to calculate if it is a right-angled, acute-angled or obtuse-angled triangle.
1) Sketch the triangle
2) Use the two shorter sides to calculate the hypotenuse as if it was a right-angled triangle
3) Compare the results:
If the given third side is the same as the calculated hypotenuse, you have a right-angled triangle.
If the given third side is larger than the calculated hypotenuse, you have an obtuse-angled triangle.
If the given third side is smaller than the calculated hypotenuse, you have an acute-angled triangle.

Slide 7 - Tekstslide

Slide 8 - Tekstslide

Right-, Acute- and Obtuse-angled triangles
In triangle PQR, PQ = 6, QR = 11 and PR = 9.
What type of triangle is triangle PQR?
1) Sketch:                      

Slide 9 - Tekstslide

Right-, Acute- and Obtuse-angled triangles
In triangle PQR, PQ = 6, QR = 11 and PR = 9.
What type of triangle is triangle PQR?
1) Sketch:                      

Slide 10 - Tekstslide

Right-, Acute- and Obtuse-angled triangles
In triangle PQR, PQ = 6, QR = 11 and PR = 9.     2) Calculation: 
                                                                                                          3) Conclusion:

                                                                                                          QR is longer than what I
                                                                                                          calculated. Therefore the
                                                                                                          angle is larger than 90
                                                                                                         degrees. PQR is an
                                                                                                         obtuse-angled triangle.

What type of triangle is triangle PQR?
1) Sketch:                      

Slide 11 - Tekstslide

Homework

Slide 12 - Tekstslide

Evaluation

Slide 13 - Tekstslide