Aerodynamica

Aerodynamica
Lesplanning:
  1. Uitleg -  vallen
  2. Toetsinzage 
  3. Uitleg - Waardoor vliegt een papieren vliegtuigje? Hoe zorg je dat een papieren vliegtuigje stabiel vliegt? 
  4. Ontwerpen
  5. Testen 


1 / 26
volgende
Slide 1: Tekstslide
NatuurkundeMiddelbare schoolvmboLeerjaar 2-4

In deze les zitten 26 slides, met tekstslides en 4 videos.

time-iconLesduur is: 120 min

Onderdelen in deze les

Aerodynamica
Lesplanning:
  1. Uitleg -  vallen
  2. Toetsinzage 
  3. Uitleg - Waardoor vliegt een papieren vliegtuigje? Hoe zorg je dat een papieren vliegtuigje stabiel vliegt? 
  4. Ontwerpen
  5. Testen 


Slide 1 - Tekstslide

Deze slide heeft geen instructies

       Demo: vallen

Slide 2 - Tekstslide

  • Krijtje (groot en klein stuk)
  • Papieren blad en daarna een papieren prop.
  • Dubbelgevouwen A4 op een boek.

Breek een krijtje in een klein en een groot stuk en houd deze tussen duim en vingers zodat de onderkant op dezelfde hoogte is (figuur 1). Vraag leerlingen te voorspellen (met een reden) welk krijtje het eerst de grond zal raken als beide tegelijk worden losgelaten. Laat vallen en herhaal tot iedereen het eens is over de observatie (zien en horen). Verklaar. Eventueel
 munten gebruiken, of een grote en een kleine steen. Kun je ook gewoon op je hand leggen en dan de hand snel naar onderen bewegen en wegtrekken. Dan blijkt ook dat we onze hand gemakkelijk met een grotere versnelling dan g kunnen versnellen. 

Laat nu een blad papier vallen, dat valt langzaam en fladdert. Maak dan een prop, deze valt sneller, maar net ietsje langzamer dan een steen. Neem vervolgens een dubbelgevouwen A4, leg het op een boek en laat het geheel vallen (figuur 2). Papier en boek komen tegelijk aan. 


            Demo: vallen
We hebben dus te maken met de zwaartekracht en de
luchtweerstand.

Slide 3 - Tekstslide

Deze slide heeft geen instructies

 De kracht van lucht 

Slide 4 - Tekstslide

Deze slide heeft geen instructies

Toetsinzage
Het correctiemodel staat in classroom.

Slide 5 - Tekstslide

Deze slide heeft geen instructies

WAARDOOR VLIEGT EEN PAPIEREN VLIEGTUIGJE? 
  • Lift
  •  Zwaartekracht
  • Voortstuwing
  • Weerstand

Slide 6 - Tekstslide

In feite vliegt een papieren vliegtuigje door dezelfde oorzaken als een echt vliegtuig. We beginnen daarom met een basiscursus aerodynamica, een goed uitgangspunt voor het vouwen van papieren vliegtuigjes.
Er zijn vier basiskrachten die een vliegtuig – ook een papieren vliegtuigje – in de lucht beïnvloeden: lift, voortstuwing, weerstand en zwaartekracht. 

Krachten die het vliegvermogen beïnvloeden
Lift, voortstuwing, weerstand en zwaartekracht beïnvloeden het vermogen van een vliegtuig om te vliegen. De pijlen laten zien in welke richting de krachten worden uitgeoefend.
De vier krachten werken elkaar tegen: lift en voortstuwing houden het vliegtuig in de lucht en op snelheid, terwijl weerstand en zwaartekracht dit tegenwerken.
Tegenover de zwaartekracht staan we machteloos, maar we kunnen de luchtweerstand proberen te minimaliseren en de voortstuwing en lift maximaliseren om het beste papieren vliegtuigje ooit te vouwen. 


Wet van Bernouilli

Des te groter de snelheid des te kleiner de luchtdruk op het bewegende voorwerp.

Slide 7 - Tekstslide

Deze slide heeft geen instructies

Pitotbuis
De Pitotbuis (genoemd naar de Fransman Henri Pitot) is een apparaat waarmee in een vliegtuig de snelheid gemeten wordt. De werking komt neer op het volgende: het verschil in druk tussen plekken waar lucht wel en niet stroomt wordt gemeten. Uit de Wet van Bernoulli volgt dan hoe snel lucht langs het vliegtuig stroomt, ofwel hoe snel het vliegtuig vliegt.

De Pitotbuis van een F-16-straaljager bevindt zich op de neus.

Slide 8 - Tekstslide

Deze slide heeft geen instructies

Lift - de wet van Bernoulli

Slide 9 - Tekstslide

Lift is de kracht die het vliegtuig in de lucht houdt, en zonder lift zou het niet kunnen opstijgen. 
  • Wet van Bernoulli
Vorm van de vleugel beïnvloedt lift
De vorm van een vleugel helpt lift te creëren. 
Vanaf de zijkant gezien is een vliegtuigvleugel niet plat, maar gebogen. Dit is om lift te creëren, en dat gebeurt volgens de wet van Bernouilli.


Om die te doorgronden moeten we eerst weten dat lucht gewoonlijk even hard op alle kanten van een object drukt. Als een vliegtuig vooruit vliegt, wordt de lucht gesplitst door de voorkant van de vleugel, en hij komt weer bij elkaar aan de achterkant.
Vanwege het profiel van de vleugel legt de lucht aan de bovenkant een langere weg af dan aan de onderkant, maar in dezelfde tijd. De lucht aan de bovenkant gaat dus sneller.
Als de lucht snelheid maakt, wordt de druk die hij op de vleugel uitoefent kleiner. De lift ontstaat doordat de luchtdruk aan de bovenkant van de vleugel kleiner is dan aan de onderkant.
Dit principe is de wet van Bernoulli, genoemd naar de Zwitserse natuurkundige Daniel Bernoulli. 

  • Lift volgens Newton
Aanvalshoek beïnvloedt lift
Als lucht een vleugel onder een hoek raakt, ontstaat er lift. 
We kunnen lift ook verklaren met de derde wet van Newton: voor elke actie is er een even grote tegengestelde reactie.

Volgens Newton hangt de lift af van de hoek van de vleugel, de aanvalshoek.
Als de voorkant van de vleugel naar boven gedraaid is, raakt de lucht de vleugel aan de onderkant. De lucht wordt omlaag gestuwd (actie), en duwt op zijn beurt de vleugel naar boven (reactie). Het resultaat is lift. 

Zwaartekracht
Tegengesteld aan die van de lift:
de lift stuwt het omhoog, terwijl
de zwaartekracht het omlaag trekt.


Zolang deze twee krachten gelijk
en tegengesteld zijn, blijft een
papieren vliegtuigje in de lucht. 

Slide 10 - Tekstslide

De zwaartekracht zorgt ervoor dat dingen die je omhoog gooit weer naar beneden komen, en houdt ons met beide benen op de grond.
De zwaartekracht heeft dus een invloed op een papieren vliegtuigje, tegengesteld aan die van de lift: de lift stuwt het omhoog, terwijl de zwaartekracht het omlaag trekt.
Zolang deze twee krachten gelijk en tegengesteld zijn, blijft een papieren vliegtuigje in de lucht. 
Voortstuwing
Door de voortstuwing vliegt een papieren vliegtuigje naar voren. 
  • Propeller, motor
  • Gooien 

Zonder voortstuwing is er geen lift mogelijk.

Slide 11 - Tekstslide

Door de voortstuwing vliegt een papieren vliegtuigje naar voren. Bij een echt vliegtuig zorgen propellers of motoren voor de voortstuwing, maar bij een papieren vliegtuigje ontstaat die wanneer je het lanceert. Zonder voortstuwing is er geen lift mogelijk.


Luchtweerstand


Minimaliseren door te stroomlijnen.



Slide 12 - Tekstslide

De luchtweerstand trekt de andere kant op en vermindert de snelheid van het vliegtuigje. De weerstand ontstaat door de wrijving van de lucht waar het vliegtuigje doorheen gaat. Als het zich voortbeweegt, moet het luchtmoleculen wegduwen. Die luchtmoleculen stoten op andere moleculen en zo ontstaan er wrijving en luchtweerstand. Je kunt het vergelijken met fietsen met tegenwind.
De 4 krachten op een vliegtuig werken tegengesteld aan elkaar: dankzij de lift en de voortstuwing blijft het in de lucht en blijft het vooruitgaan, terwijl de zwaartekracht en de weerstand de andere twee tegenwerken.
Tegenover de zwaartekracht staan we machteloos, maar we kunnen de luchtweerstand proberen te minimaliseren en de voortstuwing en lift maximaliseren. Dan vliegt een papieren vliegtuigje het beste.

Hoe zorg je ervoor dat een papieren vliegtuigje stabiel vliegt?
We onderscheiden drie vormen van stabiliteit
  • Pitchstabiliteit
  • Richtingsstabiliteit
  • Laterale stabiliteit 


Slide 13 - Tekstslide

We weten dat je zit te popelen, en we zijn bijna bij de vliegtuigmodellen zelf. Maar eerst moeten we het nog even over stabiliteit hebben, want hoe mooi je papieren vliegtuigje ook gevouwen is, als het niet stabiel is, stort het binnen te kortste keren neer.
En als je vliegtuigje stabiel is, kan het een slechte worp of een windstoot compenseren.
Er worden drie vormen van stabiliteit onderscheiden: pitch-, richtings- en laterale stabiliteit.
Voordat je aan de slag gaat om het beste papieren vliegtuigje ooit te vouwen, moeten we het hebben over de vormen van stabiliteit die je vliegtuigje in de lucht houden. 
Pitchstabiliteit
  • Zwaartepunt (zie afbeelding)
  • Ligt het zwaartepunt ervoor, dan duikt het vliegtuigje, en ligt het erachter, dan neemt de snelheid af en stijgt hij op.
  • Proefgooi en test altijd de stabiliteit. (aanpassen kan met bv. een paperclip)

Slide 14 - Tekstslide

Dankzij de pitch-stabiliteit vliegt een vliegtuig recht door de lucht zonder te dalen of te stijgen. Als de neus te zeer omhoog wijst, neemt de snelheid af. Wijst hij omlaag, dan stijgt het vliegtuig op.

 
Voor een optimale stabiliteit moet het zwaartepunt van het vliegtuigje in een specifiek, klein gebiedje van circa 1 centimeter op de romp liggen.
Ligt het zwaartepunt ervoor, dan duikt het vliegtuigje, en ligt het erachter, dan kan het overtrekken.
Doe een proefworp met je papieren vliegtuigje om de stabiliteit te testen. Maak eventueel een paperclip aan de neus vast om het zwaarder te maken, en verplaats die steeds een klein beetje naar achteren, tot het vliegtuigje stabiel is. 

Richtingstabiliteit
  • Afwijking naar links of rechts
  • Vleugelpunten omhoog of omlaag vouwen.


Slide 15 - Tekstslide

Een tweede belangrijke eigenschap is de richtingsstabiliteit. Als die niet in orde is, wijkt het vliegtuigje af naar links of naar rechts.
Om de richtingsstabiliteit te verbeteren, kun je vinnen op het achterste deel van het vliegtuig vouwen, die voorkomen dat het van zijn rechte koers afwijkt. Je kunt ook de vleugelpunten omhoog of omlaag vouwen.
Vinnen op de vleugels geven een vliegtuig richtingsstabiliteit
De vleugels buigen als vinnen omhoog voor een betere richtingsstabiliteit. 


Laterale stabiliteit

Als de laterale stabiliteit niet in orde is, zal het vliegtuigje steeds krappere rondjes gaan maken en stort het in een spiraal omlaag.

Voor de beste stabiliteit is het belangrijk dat de romp een Y-vorm heeft

Slide 16 - Tekstslide

.De derde vorm van stabiliteit is laterale stabiliteit, die ervoor zorgt dat het vliegtuigje zich in een rechte lijn voortbeweegt of in een rustige, constante curve. Als de laterale stabiliteit niet in orde is, zal het vliegtuigje steeds krappere rondjes gaan maken en stort het in een spiraal omlaag.
Dit is een veelvoorkomend probleem, maar je kunt er makkelijk iets aan doen: kijk naar je vliegtuigje vanaf de neus, en duw de vleugels iets naar boven, zodat ze een Y-vorm maken met de romp. En denk eraan dat de vleugels symmetrisch moeten zijn. 

Voor de beste stabiliteit is het belangrijk dat de romp een Y-vorm heeft
Verschillende modellen

Slide 17 - Tekstslide

Het vouwen van een papieren vliegtuigje is vooral een kwestie van persoonlijke voorkeur. Sommigen zweren bij spitse, snelle vliegtuigjes, anderen bij brede, rustig zwevende modellen, en weer anderen bij kunstzinnig gevouwen origami-achtige vliegtuigjes die bijna getrouwe kopieën van jachtvliegtuigen zijn. 
Verschillende modellen

Slide 18 - Tekstslide

Deze slide heeft geen instructies

Slide 19 - Video

Het stabiele papieren vliegtuigje: het zweefvliegtuig
Dit vliegtuigje heeft een prima lift als hij niet te hard gaat, en zweeft mooi door de lucht. Hij is erg stabiel, waardoor hij lang in de lucht kan blijven. 


 

Slide 20 - Video

https://www.youtube.com/watch?v=wedcZp07raE 

Slide 21 - Tekstslide

Deze slide heeft geen instructies

Doel
Ontwerp een papieren vliegtuigje dat ze ver mogelijk vliegt.
WR
Het wereldrecord staat op 88,3m. Een team van Boeing engineers heeft maanden gewerkt aan dit vliegtuigje. Om tot deze prestatie te komen hebben ze 500 uur lang origami en aerodynamica bestudeerd en vele prototypes getest. 

Slide 22 - Tekstslide

Deze slide heeft geen instructies

Ontwerp en vouw het beste vliegtuigje. 

Eisen:
  • Het vliegtuigje bestaat uit 1  blaadje en er is niet in geknipt.
  • Het vliegtuigje vliegt
    zo ver mogelijk.

Slide 23 - Tekstslide

Deze slide heeft geen instructies

Afsluitende demo's
  • Maagdenburger halve bollen
  • Zoenen vacuumpomp

Slide 24 - Tekstslide

Deze slide heeft geen instructies

Slide 25 - Video

Het beste papieren vliegtuigje ter wereld:
Het wereldrecord werpen van een papieren vliegtuigje staat op 64,14 meter en werd in 2012 gevestigd door de Amerikaanse quarterback Joe Ayoob. Het vliegtuigje dat hij wierp was gemaakt door John Collins, bijgenaamd The Paper Airplane Guy.
VIDEO: Bekijk de recordvlucht van Joe Ayoob 

Slide 26 - Video

Deze slide heeft geen instructies