Mastering Completing the Square

Mastering Completing the Square
1 / 17
volgende
Slide 1: Tekstslide
Algebra II11th,12th Grade

In deze les zitten 17 slides, met interactieve quizzen en tekstslides.

time-iconLesduur is: 30 min

Onderdelen in deze les

Mastering Completing the Square

Slide 1 - Tekstslide

Deze slide heeft geen instructies

Learning Objective
Understand how to complete the square and apply it to solve quadratic equations.

Slide 2 - Tekstslide

Deze slide heeft geen instructies

What is Completing the Square?
Completing the square is a method used to solve quadratic equations by creating a perfect square trinomial.

Slide 3 - Tekstslide

Deze slide heeft geen instructies

Step 1: Write the Equation
Start with a quadratic equation in the form ax^2 + bx + c = 0. Make sure the coefficient of x^2 is 1. If the coefficient of x^2 is not 1 factor it out. 


Slide 4 - Tekstslide

Deze slide heeft geen instructies

Step 2: Rewrite the Expression
Step 2. Rewrite the Expression
ax^2 + bx + c
=a(x^2+b/a x)+c

Slide 5 - Tekstslide

Deze slide heeft geen instructies

Step 3: Add AND Subtract (b/2a)^2
Add and subtract (b/2a)^2 to the equation to create a perfect square trinomial.
=a(x^2+b/a x)+c
=a(x^2+b/a x+(b/2a)^2-(b/2a)^2)+c

Slide 6 - Tekstslide

Deze slide heeft geen instructies

Step 4: Simplify
Write the perfect square trinomial as a squared binomial and solve for x.
=a(x^2+b/a x+(b/2a)^2-(b/2a)^2)+c
=a((x+b/2a)^2-(b/2a)^2)+c

Slide 7 - Tekstslide

Deze slide heeft geen instructies

Step 5: Write in Vertex Form
Write the perfect square trinomial as a squared binomial and solve for x.
=a((x+b/2a)^2-(b/2a)^2)+c
=a((x+b/2a)^2-b/4a+c

Slide 8 - Tekstslide

Deze slide heeft geen instructies

Example Problem
Given the equation x^2 + 6x +8 , demonstrate step-by-step how to complete the square and solve for x.
Step 2: Plug in the given information from the equation above A=1      B=6      C=8
=a(x^2+b/a x)+c
=1(x^2+6/1 x)+8

Slide 9 - Tekstslide

Deze slide heeft geen instructies

Example Problem
Given the equation x^2 + 6x +8 , demonstrate step-by-step how to complete the square and solve for x.
Step 3: Add AND Subtract  (b/2a)^2 using the information given. 
(b/2a)^2=(6/2(1))^2=9
=1(x^2+6x+9-9)+8

Slide 10 - Tekstslide

Deze slide heeft geen instructies

Example Problem
Given the equation x^2 + 6x +8 , demonstrate step-by-step how to complete the square and solve for x.
Step 4: Simplify by the finding the factors of (x^2+6x+9) using the box method . 
=1(x^2+6x+9-9)+8
=1((x+3)^2-9)+8

Slide 11 - Tekstslide

Deze slide heeft geen instructies

Example Problem
Given the equation x^2 + 6x +8 , demonstrate step-by-step how to complete the square and solve for x.
Step 5: Write in Vertex Form. 
=1((x+3)^2-9)+8 <- Distribute the 1
=(x+3)^2-9+8 <-Combine like terms
=(x+3)^2-1 <-Answer

Slide 12 - Tekstslide

Deze slide heeft geen instructies

Practice Problem
Solve the equation x^2 - 8x + 12  using the completing the square method.

Slide 13 - Tekstslide

Deze slide heeft geen instructies

Summary
Completing the square is a powerful method for solving quadratic equations and understanding it is essential for success in Algebra 2.

Slide 14 - Tekstslide

Deze slide heeft geen instructies

Write down 3 things you learned in this lesson.

Slide 15 - Open vraag

Have students enter three things they learned in this lesson. With this they can indicate their own learning efficiency of this lesson.
Write down 2 things you want to know more about.

Slide 16 - Open vraag

Here, students enter two things they would like to know more about. This not only increases involvement, but also gives them more ownership.
Ask 1 question about something you haven't quite understood yet.

Slide 17 - Open vraag

The students indicate here (in question form) with which part of the material they still have difficulty. For the teacher, this not only provides insight into the extent to which the students understand/master the material, but also a good starting point for the next lesson.