2.1 Making generalizations (continued)

Good morning!
Schedule: 
  • Learning goals
  • Upcoming assessment
  • Revision 
  • Generalizing specific problems
  • To generalize or not to generalize 
  • Homework 
1 / 15
volgende
Slide 1: Tekstslide
WiskundeWOStudiejaar 4

In deze les zitten 15 slides, met interactieve quizzen en tekstslides.

Onderdelen in deze les

Good morning!
Schedule: 
  • Learning goals
  • Upcoming assessment
  • Revision 
  • Generalizing specific problems
  • To generalize or not to generalize 
  • Homework 

Slide 1 - Tekstslide

Learning goals 
At the end of this lessons I can:
  • Identify patterns in number problems
  • Solve complicated problems by looking at a more general case
  • Make generalizations from a given pattern

Slide 2 - Tekstslide

Upcoming assessment
Criterion A: Knowledge and understanding 
Equivalence and inequalities 

Chapters 2.1 - 2.3 in your book

November 10 (3 weeks after the break) 

Slide 3 - Tekstslide

Give a generalization of something you have observed today

Slide 4 - Woordweb

Generalization with specific problems
Don't use a calculator!!
What is the specific problem? 

What is the general problem? 

Slide 5 - Tekstslide

How did solving the general problem make it easier to solve the specific problem?

Slide 6 - Open vraag

To generalize or not to generalize
RSA-encryption is used to encrypt and decrypt messages. 
Using prime numbers in this system makes it secure and the safest way to encrypt messages.
 
Banking details, Chat applications, web browsers, etc. 


Slide 7 - Tekstslide

To generalize or not to generalize
Now consider the expression: 




n2+n+41
Try a few more numbers and give a generalization...

Slide 8 - Tekstslide

Generalization

Slide 9 - Woordweb

To generalize or not to generalize
Now consider the expression: 




n2+n+41
Now calculate for n = 40

Slide 10 - Tekstslide

Homework


HOMEWORK:
P. 98: Practice 2
P. 100: Practice 3


Due

Slide 11 - Tekstslide

Level 1-2
Let a = odd integer and b = even integer
Calculate (a x b) multiple times with different numbers

Generalize and suggest a conjecture.

Slide 12 - Tekstslide

Level 3-4
 Without using a calculator, find the value of the following expression:

20192 − 2021 × 2017

Slide 13 - Tekstslide

Level 5-6
(Exploration 1, P. 99)
a. Choose a positive integer as your number. Square your number and subtract your number from the squared number. Try this multiple times. 
Generalize and suggest a conjecture.
b. Use specific generalization to prove that your conjecture holds for every positive integer. 
Hint: use a variable for your chosen number. 

Slide 14 - Tekstslide

Level 7-8
Let S = sum of all integers 
so S = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + ..... 
You will find a exact (finite) answer for S with generalization. 
Starting from 2, add 3 consecutive numbers together which you will then again add all together: 
S = 1 + (2 + 3 + 4) + (5 + 6 + 7) + (8 + 9 + 10) + .....
Use generalization to find an exact, finite value for S
Hint: 

Slide 15 - Tekstslide