Reactieschema's en reactievergelijkingen
Chemische reacties kunnen weergeven worden in een reactieschema of een reactievergelijking.
Reactieschema
In een reactieschema schrijven we schematisch op welke stoffen voor de reactie aanwezig waren (de beginstoffen) en welke stoffen na de reactie zijn ontstaan (de reactieproducten). De reactie zelf wordt aangegeven met een pijl. Achter elke stof wordt aangegeven in welke fase deze stof zich bevindt.
Dus: beginstof 1 (fase) + beginstof 2 (fase) ® reactieproduct 1 (fase) + reactieproduct 2 (fase)
Het reactieschema voor de verbranding van koolstof ziet er bijvoorbeeld als volgt uit:
koolstof (s) + zuurstof (g) ® koolstofdioxide (g)
De wet van behoud van massa stelt dat er bij een chemische reactie geen massa verloren gaat. Deze wet wordt ook wel de wet van Lavoisier genoemd. De wet vertelt dat de totale massa van de moleculen die worden gebruikt om een reactie tot stand te laten komen (reagentia), hetzelfde is als de totale massa van de moleculen die door de reactie worden gevormd (reactieproducten).
In vergelijkingsvorm is dat:
min = muit
De wet is sinds zijn uitvinding in 1789 de standaardmanier waarop scheikundigen reactieproducten achterhalen. Je hoeft maar twee dingen te weten om erachter te komen wat de missende reactieproducten zijn:
De massa van de moleculen vóór de reactie.
De massa van een paar reactieproducten.
Hoe gebruik je de wet van behoud van massa?
Hoe gebruik je de wet van behoud van massa?
De wet van behoud van massa is een handige tool om reactievergelijkingen kloppend te maken. Als een deel van de reactievergelijking bekend is, kun je de details van de reactie achterhalen.
Voorbeeld:
Bij verbranding van methaan komen CO2 en H2O vrij. Maar in welke verhoudingen gebeurt deze reactie eigenlijk? Daarvoor kan de wet van behoud van massa worden gebruikt. De reactievergelijking ziet er dan als volgt uit:
Reactievergelijking verbranding methaan
In de vergelijking is te zien dat er aan de linker- en rechterkant niet evenveel van alle atomen staan. Rechts staan er twee waterstofatomen en links vier. Ook staan er rechts drie zuurstofatomen en links maar twee. Het aantal koolstofatomen klopt wel. Doordat er verschillen zijn tussen beide kanten klopt de totale balans niet. Volgens de wet van behoud van massa moet de massa aan beide kanten gelijk zijn. Van elk atoom moet er vóór de pijl evenveel zijn als na de pijl.
Een goede strategie hiervoor is om te kijken naar welke atomen er aan de linkerkant te veel zijn en dat vervolgens te compenseren aan de rechterkant. In dit geval zien we twee waterstofatomen te veel vóór de pijl. Daarom moeten er na de pijl niet één, maar twee watermoleculen staan:
Reactievergelijking verbranding methaan - deels kloppend
Wanneer de balans dan opnieuw wordt opgemaakt, staan er aan de linkerkant nog twee zuurstofatomen en aan de rechterkant vier (twee van CO2 en twee van 2H2O). Er moeten aan de linkerkant twee zuurstofatomen bij, oftewel een zuurstofmolecuul:
Reactievergelijking verbranding methaan - correct
Nu klopt de reactievergelijking weer.