1.2 Sets and set notation pt.2

Good morning!
Schedule: 
  • Learning goals
  • Homework 
  • Problem solving question
  • Revision: Sets and Set notation
  • Properties of real numbers + homework
1 / 14
next
Slide 1: Slide
WiskundeMiddelbare schoolvwoLeerjaar 4

This lesson contains 14 slides, with interactive quiz and text slides.

Items in this lesson

Good morning!
Schedule: 
  • Learning goals
  • Homework 
  • Problem solving question
  • Revision: Sets and Set notation
  • Properties of real numbers + homework

Slide 1 - Slide

Learning goals 
At the end of this lessons I can:
  • Name the properties of number sets
  • round to different degrees of accuracy

Slide 2 - Slide

Any homework questions?

Slide 3 - Mind map

Set Theory symbols

Slide 4 - Slide

Universal and complementary set
The complementary set (notation: A' or Ac) of a set A contains all elements that DO NOT belong to A.
The universal set (notation: U) is a set which contains ALL ELEMENTS of a problem. 
Example: 





If U = { 1, 2, 3, 4, 5} and 
A = { 2, 4, 5} then 
A' = {1, 3} 

Slide 5 - Slide

Sets and set notation
A = { all positive even numbers } , B =  {x : x ∈ N, x < 5}, C = {10, 20, 30, 40}
The universal set U = {all Natural numbers} or ℕ
True or false?
1. C ⊂ A
2. Ø ⊆ B
3. 0 ∈ A
4. A' = {all positive odd numbers}
5. B ⊆ A

Slide 6 - Slide

Sets and set notation
A = { all positive even numbers } , B =  {x : x ∈ N, x < 5}, C = {10, 20, 30, 40}
The universal set U = {all Natural numbers} or ℕ
True or false?
1. C ⊂ A
2. Ø ⊆ B
3. 0 ∈ A
4. A' = {all positive odd numbers}
5. B ⊆ A

Slide 7 - Slide

Homework
P. 26: Practice 3(1, 2, 3, 4

Slide 8 - Slide

Properties of real numbers (addition and multiplication)
Please read the information on P. 30 and do Practice 4. 

If you want more explanation, open this Lessonup from Toddle > Class files > Unit 1 number systems and number sense
And go to Slide 19

Done?


Homework:
P. 26: Practice 3(1, 2, 3, 4)
P. 30: Practice 4

Slide 9 - Slide

Properties of real numbers: Commutative property

The Property:                       a + b = b + a 
                                                    a ⋅ b  = b ⋅ a 


Example:                                2 + 3 = 3 + 2
                                                    2 ⋅ 3 = 3  ⋅ 2
Is there a different operator that does not have this property? 

Slide 10 - Slide

Properties of real numbers: Associative property

The Property:                       a + (b + c) = (a + b) + c
                                                    (a ⋅ b) ⋅ c  = a ⋅ (b ⋅ c)


Example:                                1 + (2 + 3) = (1 + 2) + 3
                                                  1 ⋅ (2 ⋅ 3) = (1 ⋅ 2) ⋅ 3
Is there a different operator that does not have this property? 

Slide 11 - Slide

Properties of real numbers: Identity

The Property:                                  a + i = a
                                                               a ⋅ i = a


What is the identity for the set of real numbers under addition ?
What is the identity for the set of real numbers under multiplication? 

Slide 12 - Slide

Properties of real numbers: Inverse

The Property:                                  a + Inv = i  (i = 0)
                                                               a ⋅ Inv = i  (i = 1)


What is the inverse for the set of real numbers under addition ?
What is the inverse for the set of real numbers under multiplication? 

Slide 13 - Slide

Properties of real numbers: Distributive property

The Property:                       (a + b)c = ac + bc
                                                    


Example:                                (20 + 7)4 = 80 + 28
                                         

Slide 14 - Slide