3.1 Kwadratische functies (theorie A, B en C)

3
Kwadratische problemen


Ga rustig zitten!
Pak je wiskundeboek en schrift.
1 / 19
suivant
Slide 1: Diapositive
WiskundeMiddelbare schoolhavoLeerjaar 3

Cette leçon contient 19 diapositives, avec diapositives de texte.

time-iconLa durée de la leçon est: 45 min

Éléments de cette leçon

3
Kwadratische problemen


Ga rustig zitten!
Pak je wiskundeboek en schrift.

Slide 1 - Diapositive

Planning van de vandaag:

- Herhaling vorige les

- Uitleg nieuwe stof (wel nog 3.1)

- Aan het werk  (vergeten jullie niet na te kijken?!)
3.1 Kwadratische functies

Slide 2 - Diapositive

Aan het einde van deze les:

- kan je de grafiek tekenen van een kwadratische functie

- kan je onderzoeken of een punt op de grafiek van een kwadratische functie ligt
3.1 Kwadratische functies

Slide 3 - Diapositive

3.1 Herhaling
Gegeven is de functie f(x) = x² + 3x - 5
a) Bereken f(5)
b) Bereken f(-3)
c) Schrijf de formule van f op 

Je krijgt 3 minuten om in stilte de antwoorden op te schrijven, dus pak je schrift en een pen (probeer het zonder boek, tenzij het echt niet gaat).
timer
3:00

Slide 4 - Diapositive

3.1 Herhaling
Gegeven is de functie f(x) = x² + 3x - 5
a) Bereken f(5)
b) Bereken f(-3)
c) Schrijf de formule van f op 
a)  f(5) = 5² + 3 ⋅ 5 - 5 = 

Slide 5 - Diapositive

3.1 Herhaling
Gegeven is de functie f(x) = x² + 3x - 5
a) Bereken f(5)
b) Bereken f(-3)
c) Schrijf de formule van f op 
a)  f(5) = 5² + 3 ⋅ 5 - 5 = 25 + 15 - 5 = 30

Slide 6 - Diapositive

3.1 Herhaling
Gegeven is de functie f(x) = x² + 3x - 5
a) Bereken f(5)
b) Bereken f(-3)
c) Schrijf de formule van f op 
a)  f(5) = 5² + 3 ⋅ 5 - 5 = 25 + 15 - 5  =30
b) f(-3) = (-3)² + 3 ⋅ -3 - 5 =

Slide 7 - Diapositive

3.1 Herhaling
Gegeven is de functie f(x) = x² + 3x - 5
a) Bereken f(5)
b) Bereken f(-3)
c) Schrijf de formule van f op 
a)  f(5) = 5² + 3 ⋅ 5 - 5 = 25 + 15 - 5  =30
b)  f(-3) = (-3)² + 3 ⋅ -3 - 5 = 9 - 9 - 5 = -5

Slide 8 - Diapositive

3.1 Herhaling
Gegeven is de functie f(x) = x² + 3x - 5
a) Bereken f(5)
b) Bereken f(-3)
c) Schrijf de formule van f op 
a)  f(5) = 5² + 3 ⋅ 5 - 5 = 25 + 15 - 5 =35
b)  f(-3) = (-3)² + 3 ⋅ -3 - 5 = 9 - 9 - 5 = -5
c)  y=  x² + 3x - 5

Slide 9 - Diapositive

3.1 Kwadratische functies
a0
f(x)=ax2+bx+c
f(x)=21x2+3x+2

Slide 10 - Diapositive

3.1 Kwadratische functies
a0
f(x)=ax2+bx+c
f(x)=21x2+3x+2
a=21

Slide 11 - Diapositive

3.1 Kwadratische functies
a0
f(x)=ax2+bx+c
f(x)=21x2+3x+2
a=21
b=3

Slide 12 - Diapositive

3.1 Kwadratische functies
a0
f(x)=ax2+bx+c
f(x)=21x2+3x+2
a=21
b=3
c=2

Slide 13 - Diapositive

3.1 Kwadratische functies

Slide 14 - Diapositive

3.1 Kwadratische functies
f(x)=21x2+3x+2
f(6)=f(0)
Reken na dat

Slide 15 - Diapositive

3.1 Kwadratische functies
f(x)=21x2+3x+2
Laat met een berekening zien of A( 10, 82 ) op de grafiek van f ligt.

Slide 16 - Diapositive

3.1 Kwadratische functies
Stappenplan bij het tekenen van een kwadratische functie:
- Laat zien dat je bij twee gegeven x-en dezelfde uitkomst hebt.
- Maak een tabel met zeven punten (gebruik de x-en van stap 1).
- Maak een assenstelsel (benoem de assen!) en zet de punten uit de tabel erin. 
- Teken de parabool. 

Slide 17 - Diapositive

3.1 Kwadratische functies

Slide 18 - Diapositive

Maken:  Opgaven 8, 9, 10, L2  &  13, 14, 15, 16, L3

Hoe:        




Klaar:      Kijk alles na!


Niet overleggen, geen vragen             -->
Niet overleggen, wel vragen                -->
Eén voor één bij mij komen.
Overleg én vragen wel toegestaan    -->
Aan het werk

Slide 19 - Diapositive