Wat is LessonUp
Zoeken
Kanalen
Inloggen
Registreren
‹
Terug naar zoeken
goniometrie
Goniometrie
1 / 34
volgende
Slide 1:
Tekstslide
Wiskunde
Middelbare school
vmbo k, t, mavo
Leerjaar 3,4
In deze les zitten
34 slides
, met
interactieve quizzen
en
tekstslides
.
Lesduur is:
50 min
Start les
Bewaar
Deel
Printen
Onderdelen in deze les
Goniometrie
Slide 1 - Tekstslide
Goniometrie
Sinus, cosinus, tangens en pythagoras alleen in rechthoekige driehoeken
Bij verhaaltjessommen maak je áltijd een schets
Reken met onafgeronde getallen
Rond je eindantwoord goed af, vermeldt eenheden
Slide 2 - Tekstslide
Rechthoekige driehoek
rechthoekszijde
Lange zijde
rechthoekszijde
A
B
C
Lange zijde is altijd tegenover de rechte hoek,
De rechthoekszijden zitten aan de rechte hoek vast
Slide 3 - Tekstslide
Rechthoekige driehoek
A
B
C
Vanuit
LB
:
BC is de Lange zijde
AC is de overstaande rechthoekszijde
AB is de aanliggende rechthoekszijde
a
L
o
Slide 4 - Tekstslide
Rechthoekige driehoek
A
B
C
Vanuit
LC
:
BC is de lange zijde
AB is de overstaande rechthoekszijde
AC is de aanliggende rechthoekszijde
o
L
a
Slide 5 - Tekstslide
De lange zijde is:
A
AB
B
BC
C
AC
Slide 6 - Quizvraag
De rechthoekzijden zijn:
A
AB
B
BC
C
AC
Slide 7 - Quizvraag
Vanuit
L
A
overstaande zijde is:
A
AB
B
BC
C
AC
D
kan niet
Slide 8 - Quizvraag
Vanuit
LB
overstaande zijde is:
A
AB
B
BC
C
AC
D
kan niet
Slide 9 - Quizvraag
Vanuit
LC
overstaande zijde is:
A
AB
B
BC
C
AC
D
kan niet
Slide 10 - Quizvraag
Vanuit
LC
aanliggende zijde is:
A
AB
B
BC
C
AC
D
kan niet
Slide 11 - Quizvraag
Vanuit
LB
aanliggende zijde is:
A
AB
B
BC
C
AC
D
kan niet
Slide 12 - Quizvraag
Vanuit
LA
aanliggende zijde is:
A
AB
B
BC
C
AC
D
kan niet
Slide 13 - Quizvraag
toa sol cal
t
a
n
g
e
n
s
∠
=
a
a
n
l
i
g
g
e
n
d
e
z
i
j
d
e
o
v
e
r
s
t
a
a
n
d
e
z
i
j
d
e
s
i
n
u
s
∠
=
l
a
n
g
e
z
i
j
d
e
o
v
e
r
s
t
a
a
n
d
e
z
i
j
d
e
c
o
s
i
n
u
s
∠
=
l
a
n
g
e
z
i
j
d
e
a
a
n
l
i
g
g
e
n
d
e
z
i
j
d
e
t
=
a
o
→
t
o
a
s
=
l
o
→
s
o
l
c
=
l
a
→
c
a
l
Slide 14 - Tekstslide
tangens
A
B
C
tan
∠
B
=
a
o
tan
∠
B
=
A
B
A
C
Slide 15 - Tekstslide
sinus
A
B
C
sin
∠
B
=
l
o
sin
∠
B
=
B
C
A
C
Slide 16 - Tekstslide
cosinus
A
B
C
cos
∠
B
=
l
a
cos
∠
B
=
B
C
A
B
Slide 17 - Tekstslide
tan
∠
A
=
A
B
C
A
B
B
A
C
B
C
C
A
C
A
B
D
A
B
B
C
Slide 18 - Quizvraag
sin
∠
A
A
B
C
A
B
B
A
C
B
C
C
A
C
A
B
D
A
B
B
C
Slide 19 - Quizvraag
cos
∠
A
A
B
C
A
B
B
A
C
B
C
C
A
C
A
B
D
A
B
B
C
Slide 20 - Quizvraag
tan
∠
C
A
B
C
A
B
B
A
C
B
C
C
A
C
B
C
D
A
B
B
C
Slide 21 - Quizvraag
sin
∠
C
A
B
C
A
B
B
A
C
B
C
C
A
C
A
B
D
A
B
B
C
Slide 22 - Quizvraag
cos
∠
C
A
B
C
A
B
B
A
C
B
C
C
A
C
A
B
D
A
B
B
C
Slide 23 - Quizvraag
tan
∠
B
A
B
C
A
B
B
A
C
B
C
C
A
C
A
B
D
A
B
B
C
Slide 24 - Quizvraag
tan
(
∠
B
)
=
3
2
1
8
s
h
i
f
t
tan
(
1
8
:
3
2
)
=
2
9
,
3
5
7
.
.
.
g
e
e
f
t
∠
B
=
2
9
,
3
5
7
.
.
.
°
Hoek berekenen met tangens
alleen bij een rechthoekige driehoek!
op de rekenmachine:
d
u
s
∠
B
≈
2
9
,
4
°
tan
=
a
o
sin
=
s
o
cos
=
s
a
_____
Slide 25 - Tekstslide
Hoek berekenen met sinus
sin
∠
A
=
3
6
,
7
1
8
s
h
i
f
t
sin
(
1
8
:
3
6
,
7
)
=
2
9
,
3
7
1
.
.
.
tan
=
a
o
sin
=
l
o
cos
=
l
a
g
e
e
f
t
∠
A
=
2
9
,
3
7
1
.
.
.
°
Σ
op de rekenmachine:
d
u
s
∠
A
≈
2
9
,
4
°
Slide 26 - Tekstslide
Hoek berekenen met cosinus
cos
∠
A
=
3
6
,
7
3
2
g
e
e
f
t
∠
A
=
2
9
,
3
5
1
.
.
.
°
tan
=
a
o
sin
=
l
o
cos
=
l
a
∠
A
=
cos
−
1
(
3
2
:
3
6
,
7
)
=
2
9
,
3
1
5
.
.
.
op de rekenmachine:
d
u
s
∠
A
≈
2
9
,
4
°
Slide 27 - Tekstslide
Zijde berekenen met tangens
2
9
°
tan
2
9
=
3
2
A
B
A
B
=
(
tan
2
9
)
⋅
3
2
=
1
7
,
7
3
7
.
.
.
2
=
3
6
d
u
s
A
B
≈
1
7
,
7
_____
tan
=
a
o
sin
=
l
o
cos
=
l
a
tan
∠
C
=
B
C
A
B
Slide 28 - Tekstslide
2
9
°
Zijde berekenen met tangens
tan
2
9
=
A
B
1
8
A
B
=
1
8
:
(
tan
2
9
)
=
3
2
,
4
7
2
.
.
.
2
=
3
6
d
u
s
A
B
≈
3
2
,
5
tan
=
a
o
sin
=
l
o
cos
=
l
a
tan
∠
C
=
B
C
A
B
Slide 29 - Tekstslide
Zijde berekenen met sinus
2
9
°
sin
2
9
=
B
C
1
8
B
C
=
1
8
:
(
sin
2
9
)
=
3
7
,
1
2
7
.
.
.
2
=
3
6
d
u
s
B
C
≈
3
7
,
1
tan
=
a
o
sin
=
l
o
cos
=
l
a
?
sin
∠
C
=
B
C
A
C
Slide 30 - Tekstslide
Zijde berekenen met sinus
2
9
°
?
sin
∠
B
=
B
C
A
C
A
C
=
3
6
,
7
⋅
(
sin
2
9
)
=
1
7
,
7
9
2
.
.
.
2
=
3
6
d
u
s
A
C
≈
1
7
,
7
9
tan
=
a
o
sin
=
l
o
cos
=
l
a
sin
2
9
=
3
6
,
7
A
C
Slide 31 - Tekstslide
Zijde berekenen met cosinus
?
2
9
°
cos
∠
C
=
A
C
B
C
2
=
3
6
A
C
=
3
2
:
(
cos
2
9
)
=
3
6
,
5
8
7
.
.
.
tan
=
a
o
sin
=
l
o
cos
=
l
a
d
u
s
A
C
≈
3
5
,
6
cos
2
9
=
A
C
3
2
Slide 32 - Tekstslide
zijde berekenen met cosinus
?
2
9
°
cos
∠
C
=
A
C
B
C
B
C
=
(
cos
2
9
)
⋅
3
6
,
7
=
3
2
,
0
9
8
.
.
.
2
=
3
6
d
u
s
B
C
≈
3
2
,
1
0
tan
=
a
o
sin
=
l
o
cos
=
l
a
cos
2
9
=
3
6
,
7
B
C
Slide 33 - Tekstslide
Goniometrie
Sinus, cosinus, tangens en pythagoras alleen in rechthoekige driehoeken
Bij verhaaltjessommen maak je áltijd een schets
Reken verder met niet afgeronde getallen
Rond je eindantwoord goed af, vermeldt eenheden
Slide 34 - Tekstslide
Meer lessen zoals deze
sinus, cosinus en tangens
September 2019
- Les met
18 slides
Wiskunde
Middelbare school
vmbo k, t, mavo
Leerjaar 3,4
sinus, cosinus en tangens
April 2018
- Les met
18 slides
Wiskunde
Middelbare school
vmbo k, t, mavo
Leerjaar 3,4
goniometrie
December 2022
- Les met
44 slides
Wiskunde
Middelbare school
vmbo k, t, mavo
Leerjaar 3,4
goniometrie
November 2022
- Les met
44 slides
Wiskunde
Middelbare school
vmbo k, t, mavo
Leerjaar 3,4
goniometrie
December 2023
- Les met
37 slides
Wiskunde
Middelbare school
vmbo k, t, mavo
Leerjaar 3,4
goniometrie
Juni 2022
- Les met
49 slides
Wiskunde
Middelbare school
vmbo k, t, mavo
Leerjaar 3,4
goniometrie
Maart 2022
- Les met
19 slides
Wiskunde
Middelbare school
vmbo k, t, mavo
Leerjaar 3,4
tangens
April 2018
- Les met
31 slides
Wiskunde
Middelbare school
vmbo g, t
Leerjaar 3,4