Wat is LessonUp
Zoeken
Kanalen
Inloggen
Registreren
‹
Terug naar zoeken
hst 9 lineaire formules
9.1 lineaire grafieken
1 / 25
volgende
Slide 1:
Tekstslide
Wiskunde
Middelbare school
vmbo k
Leerjaar 2
In deze les zitten
25 slides
, met
interactieve quizzen
,
tekstslides
en
2 videos
.
Lesduur is:
50 min
Start les
Bewaar
Deel
Printen
Onderdelen in deze les
9.1 lineaire grafieken
Slide 1 - Tekstslide
Lesroutine
Pak een kopje thee en een sinaasappel (pak die vitamientjes)
Zet je mobiel op stil of lever m in bij heit of mem
Pak je schrift, etui en zorg dat je potlood geslepen is.
De opdrachten met een schaartje teken je in je schrift
Trek een uur uit voor je wiskunde les (waaat? ja echt.) Een uur.
Ben je eerder klaar? Dan ga je op snappet bezig met rekenen of wiskunde
timer
50:00
Slide 2 - Tekstslide
Doelen
Je kunt de lesroutine toepassen
Je kunt een grafiek tekenen
Je kunt in een grafiek de toename bepalen
Je kunt bepalen of een grafiek lineair is
Je kunt het hellingsgetal bepalen
Je kunt het startgetal bepalen
Slide 3 - Tekstslide
Lineaire formule
Een formule waarvan de grafiek een rechte lijn is
De toename is steeds gelijk
Slide 4 - Tekstslide
Slide 5 - Video
Hoe onderzoek je of een formule lineair is?
Maak een tabel bij de formule. Gebruik in de bovenste rij opeenvolgende getallen.
Kijk naar de onderste rij en schrijf de toenamen op
Kijk naar de toenamen. Als de toename steeds gelijk is, dan is de formule een lineaire formule.
Voorbeeld: 10 x aantal + 6= bedrag
Slide 6 - Tekstslide
Voorbeeld
30 x u + 25 = kosten
Het dak is lek. De dakdekker kost 30 euro per uur. Hij rekent 25,- voorrijkosten.
30 x aantal uren + 25,- voorrijkosten = kosten
Maak een verhoudingstabel met 0-7 uur werk (boven) en de kosten (onder)
Slide 7 - Tekstslide
Slide 8 - Video
Startgetal
Slide 9 - Tekstslide
Wat is het hellingsgetal?
A
1
B
25
C
600
Slide 10 - Quizvraag
Wat is het
hellingsgetal?
A
5
B
2
C
2,5
D
3,5
Slide 11 - Quizvraag
In de formule
12P + 100 = B
is 100 het..
A
hellingsgetal
B
begingetal
C
startgetal
D
nulgetal
Slide 12 - Quizvraag
Wat is het startgetal?
Slide 13 - Tekstslide
Wat is het
hellingsgetal?
A
3
B
4
C
2
D
8
Slide 14 - Quizvraag
Aan de slag!
KGT: 9.1 en de helft van 9.2
Havo: 6.1 en de helft van 6.2
Klaar? Extra oefenen op de volgende slides of Snappet wiskunde of rekenen
KGT: 9.1 en de helft van 9.2
Havo: 6.1 en de helft van 6.2
Klaar? Extra oefenen op de volgende slides.
Extra oefenen op snappet
Slide 15 - Tekstslide
In de formule 4w+ 4= K
is 4 het hellingsgetal
A
Waar
B
Niet waar
Slide 16 - Quizvraag
wat is het hellingsgetal in deze grafiek?
A
0
B
5
C
10
D
20
Slide 17 - Quizvraag
In de formule
5B + 25 = W
is 5 het...
A
startgetal
B
priemgetal
C
hellingsgetal
D
heuvelgetal
Slide 18 - Quizvraag
Wat is het startgetal?
Slide 19 - Tekstslide
Wat is het startgetal?
Slide 20 - Tekstslide
Wat is het startgetal?
A
0
B
3
C
4
D
2
Slide 21 - Quizvraag
Wat is het startgetal?
A
60
B
20
C
40
D
1
Slide 22 - Quizvraag
Wat is het startgetal?
A
0
B
21
C
10
D
7
Slide 23 - Quizvraag
In de formule 3w + 50 = K
50 het startgetal
A
waar
B
niet waar
Slide 24 - Quizvraag
Wat is het startgetal?
En het hellingsgetal?
A
-5 en -2
B
-3 en -2
C
-3 en 2
D
-5 en 2
Slide 25 - Quizvraag
Meer lessen zoals deze
hst 5 lineaire formules
November 2022
- Les met
26 slides
Wiskunde
Middelbare school
vmbo k
Leerjaar 2
G2 - H5 lineaire formules
Oktober 2020
- Les met
26 slides
Wiskunde
Middelbare school
vmbo g
Leerjaar 2
hst 5 lineaire formules startgetal en hellingsgetal
Januari 2021
- Les met
35 slides
Wiskunde
Middelbare school
vmbo k
Leerjaar 2
3M H3.3 en H3.4 getal en ruimte
September 2021
- Les met
13 slides
Wiskunde
Middelbare school
vmbo g, t, mavo
Leerjaar 3
3M H3.4 formule bij een tabel
November 2021
- Les met
16 slides
Wiskunde
Middelbare school
mavo
Leerjaar 3
Hoofdstuk 5 Herhaling
November 2022
- Les met
25 slides
Wiskunde
Middelbare school
vmbo k
Leerjaar 2
PITTIG BK hst 5 lineaire formules
Februari 2023
- Les met
23 slides
Wiskunde
Middelbare school
vmbo k
Leerjaar 2
test jezelf
Maart 2024
- Les met
46 slides
Wiskunde
Middelbare school
vmbo b, k
Leerjaar 2