H5: 5.4 deel 2 Stelling van Pythagoras



● Leerdoelen bespreken
● Terugblik: t/m 5.4a
● Uitleg: 5.4b
● Zelfstandig werken
● Leerdoel behaald?
Welkom bij wiskunde
bij
bij
in je tas.
Laptop 
Telefoon
in de telefoontas.
Leg je spullen op tafel
Wat gaan we doen?
1 / 41
volgende
Slide 1: Tekstslide
WiskundeMiddelbare schoolvmbo tLeerjaar 2

In deze les zitten 41 slides, met interactieve quizzen, tekstslides en 5 videos.

time-iconLesduur is: 30 min

Onderdelen in deze les



● Leerdoelen bespreken
● Terugblik: t/m 5.4a
● Uitleg: 5.4b
● Zelfstandig werken
● Leerdoel behaald?
Welkom bij wiskunde
bij
bij
in je tas.
Laptop 
Telefoon
in de telefoontas.
Leg je spullen op tafel
Wat gaan we doen?

Slide 1 - Tekstslide

Leerdoelen
Je kunt de rechthoekszijde berekenen als je
een rechthoekszijde en schuine zijde weet.



H6: Stelling van Pythagoras
VK
6.1: Zijden benoemen
6.2: De stelling van Pythagoras
6.3: De stelling van Pythagoras toepassen
6.4: Doorsnede
6.5: [Havo] Pythagoras in de ruimte
H5: De stelling van Pythagoras

VK: Kwadraat en rekenvolgorde
5.1: kwadraten en wortels
5.2: machten
5.3: Zijden benoemen
5.4: De stelling van Pythagoras
5.5: De stelling van Pythagoras toepassen

Slide 2 - Tekstslide


132=

Slide 3 - Open vraag


202=

Slide 4 - Open vraag


4=

Slide 5 - Open vraag


196=

Slide 6 - Open vraag

In welk soort driehoek geldt de stelling van Pythagoras?
A
Gelijkbenige driehoek
B
Gelijkzijdige driehoek
C
Alle driehoeken
D
Rechthoekige driehoek

Slide 7 - Quizvraag

Hoe noemen we deze rode zijde,
die vast zit aan de
rechte hoek?
A
Hypothenusa
B
Rechthoekszijde
C
Schuine zijde
D
Opstaande zijde

Slide 8 - Quizvraag

Hoe noemen we deze rode zijde,
die NIET vast zit
aan de rechte hoek?
A
Hypothenusa
B
Rechthoekszijde
C
Schuine zijde
D
Opstaande zijde

Slide 9 - Quizvraag

Hoe noemen we deze
rode zijde?
A
Hypothenusa
B
Rechthoekszijde
C
Schuine zijde
D
Opstaande zijde

Slide 10 - Quizvraag

6.1: Stelling van Pythagoras
ene rechthoekszijde2 + andere rechthoekszijde2 = schuine zijde2

Met de stelling kunnen we de lengte van een zijde uitrekenen, als:
  1. Het figuur een rechthoekige driehoek is én
  2. Je 2 zijden weet.

Dit doen wij met een schema. Schrijf deze vaak op, zodat je het nooit vergeet. Wij doen het iets anders dan het boek.

Slide 11 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz=           =         = 
rhz2 =           =         =         +
  sz2 =           =         = 



______________________
Σ

Slide 12 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB=         = 
rhz2 =           =         =         +
  sz2 =           =         = 



______________________
Σ

Slide 13 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB=         = 
rhz2 = AC2 =         =         +
  sz2 =           =         = 



______________________
Σ

Slide 14 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB=         = 
rhz2 = AC2 =         =         +
  sz2 = BC2 =         = 



______________________
Σ

Slide 15 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB= 42  = 
rhz2 = AC2 =         =         +
  sz2 = BC2 =         = 



______________________
Σ

Slide 16 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB= 42  = 
rhz2 = AC2 =  72  =    +
  sz2 = BC2 =         = 



______________________
Σ

Slide 17 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB= 42  = 
rhz2 = AC2 =  72  =    +
  sz2 = BC2 = ???  = 



______________________
Σ

Slide 18 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB= 42  = 16
rhz2 = AC2 =  72  = 49   +
  sz2 = BC2 = ???  = ??



______________________
Σ

Slide 19 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB= 42  = 16
rhz2 = AC2 =  72  = 49   +
  sz2 = BC2 = ???  = 65



______________________
Σ

Slide 20 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB= 42  = 16
rhz2 = AC2 =  72  = 49   +
  sz2 = BC2 = ???  = 65

BC = 


______________________
Σ

Slide 21 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB= 42  = 16
rhz2 = AC2 =  72  = 49   +
  sz2 = BC2 = ???  = 65

BC = 


______________________
65=

Slide 22 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB= 42  = 16
rhz2 = AC2 =  72  = 49   +
  sz2 = BC2 = ???  = 65

BC = 


______________________
65=8,062...

Slide 23 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB= 42  = 16
rhz2 = AC2 =  72  = 49   +
  sz2 = BC2 = ???  = 65

BC = 
Dus BC       8,1 cm

______________________
65=8,062...

Slide 24 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld: Bereken zijde BC. 
Rond af op helen.
Eis 1: Is het een rechthoekige driehoek?
  • Ja

Eis 2: Zijn er 2 zijden bekend?
  • Ja

  • Dus we maken het schema:

Slide 25 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg: Bereken zijde BC.

rhz2
rhz2                            +
  sz2

_______________

Slide 26 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg: Bereken zijde BC.

rhz= AB=
rhz2 = BC2 =                   +
  sz2 = AC2 =

_________________

Slide 27 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg: Bereken zijde BC.

rhz= AB= 1002  = 10.000
rhz2 = BC2 =  ???                         +
  sz2 = AC2 = 1502  = 22.500

______________________

Slide 28 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg: Bereken zijde BC.

rhz= AB= 1002  = 10.000
rhz2 = BC2 =  ???    = 12.500   +
  sz2 = AC2 = 1502  = 22.500

______________________

Slide 29 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg: Bereken zijde BC.

rhz= AB= 1002  = 10.000
rhz2 = BC2 =  ???    = 12.500   +
  sz2 = AC2 = 1502  = 22.500

BC = 

______________________

Slide 30 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg: Bereken zijde BC.

rhz= AB= 1002  = 10.000
rhz2 = BC2 =  ???    = 12.500   +
  sz2 = AC2 = 1502  = 22.500

BC = 

______________________
12.500=111,803...

Slide 31 - Tekstslide

6.2: Stelling van Pythagoras
Voorbeeld opg: Bereken zijde BC.

rhz= AB= 1002  = 10.000
rhz2 = BC2 =  ???    = 12.500   +
  sz2 = AC2 = 1502  = 22.500

BC = 
Dus BC       112 m

______________________
12.500=111,803...

Slide 32 - Tekstslide

Huiswerk
Maken:
blz. 27: Opg. 51 t/m 54 en 56

Nakijken:
Alles wat je gemaakt hebt van H5

timer
4:00
Achter de les

Slide 33 - Tekstslide

Leerdoelen behaald?
Je kunt de rechthoekszijde berekenen als je
een rechthoekszijde en schuine zijde weet.



H6: Stelling van Pythagoras
VK
6.1: Zijden benoemen
6.2: De stelling van Pythagoras
6.3: De stelling van Pythagoras toepassen
6.4: Doorsnede
6.5: [Havo] Pythagoras in de ruimte
H5: De stelling van Pythagoras

VK: Kwadraat en rekenvolgorde
5.1: kwadraten en wortels
5.2: machten
5.3: Zijden benoemen
5.4: De stelling van Pythagoras
5.5: De stelling van Pythagoras toepassen

Slide 34 - Tekstslide

Welk leerpunt neem je mee uit deze les?

Slide 35 - Woordweb

Hierna volgen enkele filmpjes die je kunnen helpen met het behalen van de leerdoelen.
Hierna volgen enkele filmpjes die je kunnen helpen met het behalen van de leerdoelen.
Hierna volgen enkele filmpjes die je kunnen helpen met het behalen van de leerdoelen.

Slide 36 - Tekstslide

Slide 37 - Video

Slide 38 - Video

Slide 39 - Video

Slide 40 - Video

Slide 41 - Video