H5: 5.4 deel a schuine zijde berekenen



● Leerdoelen bespreken
● Terugblik: VK t/m 5.3
● Uitleg: 5.4a
● Zelfstandig werken
● Leerdoel behaald?
Welkom bij wiskunde
bij
bij
in je tas.
Laptop 
Telefoon
in de telefoontas.
Leg je spullen op tafel
Wat gaan we doen?
1 / 40
volgende
Slide 1: Tekstslide
WiskundeMiddelbare schoolvmbo tLeerjaar 2

In deze les zitten 40 slides, met interactieve quizzen, tekstslides en 5 videos.

time-iconLesduur is: 30 min

Onderdelen in deze les



● Leerdoelen bespreken
● Terugblik: VK t/m 5.3
● Uitleg: 5.4a
● Zelfstandig werken
● Leerdoel behaald?
Welkom bij wiskunde
bij
bij
in je tas.
Laptop 
Telefoon
in de telefoontas.
Leg je spullen op tafel
Wat gaan we doen?

Slide 1 - Tekstslide

Leerdoelen
Je kunt in een rechthoekige driehoek de
rechthoekszijden en 
de schuine zijde benoemen.

Je kunt met behulp van de stelling van
Pythagoras de lengte van de schuine zijde 
berekenen.
H6: Stelling van Pythagoras
VK
6.1: Zijden benoemen
6.2: De stelling van Pythagoras
6.3: De stelling van Pythagoras toepassen
6.4: Doorsnede
6.5: [Havo] Pythagoras in de ruimte
H5: De stelling van Pythagoras

VK: Kwadraat en rekenvolgorde
5.1: kwadraten en wortels
5.2: machten
5.3: Zijden benoemen
5.4: De stelling van Pythagoras
5.5: De stelling van Pythagoras toepassen

Slide 2 - Tekstslide


32=

Slide 3 - Open vraag


82=

Slide 4 - Open vraag


122=

Slide 5 - Open vraag


49=

Slide 6 - Open vraag


625=

Slide 7 - Open vraag

Rechthoekige driehoek
Gelijkbenige Rechthoekige driehoek
Gelijkbenige driehoek
Gelijkzijdige driehoek
Gewone
driehoek

Slide 8 - Sleepvraag

In welk soort driehoek geldt de stelling van Pythagoras?
A
Gelijkbenige driehoek
B
Gelijkzijdige driehoek
C
Alle driehoeken
D
Rechthoekige driehoek

Slide 9 - Quizvraag

Hoe noemen we deze rode zijde,
die vast zit aan de
rechte hoek?
A
Hypothenusa
B
Rechthoekszijde
C
Schuine zijde
D
Opstaande zijde

Slide 10 - Quizvraag

Hoe noemen we deze rode zijde,
die NIET vast zit
aan de rechte hoek?
A
Hypothenusa
B
Rechthoekszijde
C
Schuine zijde
D
Opstaande zijde

Slide 11 - Quizvraag

Hoe noemen we deze
rode zijde?
A
Hypothenusa
B
Rechthoekszijde
C
Schuine zijde
D
Opstaande zijde

Slide 12 - Quizvraag

5.4: Stelling van Pythagoras
ene rechthoekszijde2 + andere rechthoekszijde2 = schuine zijde2

Met de stelling kunnen we de lengte van een zijde uitrekenen, als:
  1. Het figuur een rechthoekige driehoek is én
  2. Je 2 zijden weet.

Dit doen wij met een schema. Schrijf deze vaak op, zodat je het nooit vergeet. Wij doen het iets anders dan het boek.

Slide 13 - Tekstslide

5.4: Stelling van Pythagoras
ene rechthoekszijde2 + andere rechthoekszijde2 = schuine zijde2
Schema:

rhz2
rhz2                            +
  sz2

_______________

Slide 14 - Tekstslide

5.4: Stelling van Pythagoras

Slide 15 - Tekstslide

5.4: Stelling van Pythagoras
ene rechthoekszijde2 + andere rechthoekszijde2 = schuine zijde2
Schema:

rhz2
rhz2                            +
  sz2

_______________

Slide 16 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz=           =         = 
rhz2 =           =         =         +
  sz2 =           =         = 



______________________
Σ

Slide 17 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB=         = 
rhz2 =           =         =         +
  sz2 =           =         = 



______________________
Σ

Slide 18 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB=         = 
rhz2 = AC2 =         =         +
  sz2 =           =         = 



______________________
Σ

Slide 19 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB=         = 
rhz2 = AC2 =         =         +
  sz2 = BC2 =         = 



______________________
Σ

Slide 20 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB= 42  = 
rhz2 = AC2 =         =         +
  sz2 = BC2 =         = 



______________________
Σ

Slide 21 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB= 42  = 
rhz2 = AC2 =  72  =    +
  sz2 = BC2 =         = 



______________________
Σ

Slide 22 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB= 42  = 
rhz2 = AC2 =  72  =    +
  sz2 = BC2 = ???  = 



______________________
Σ

Slide 23 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB= 42  = 16
rhz2 = AC2 =  72  = 49   +
  sz2 = BC2 = ???  = ??



______________________
Σ

Slide 24 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB= 42  = 16
rhz2 = AC2 =  72  = 49   +
  sz2 = BC2 = ???  = 65



______________________
Σ

Slide 25 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB= 42  = 16
rhz2 = AC2 =  72  = 49   +
  sz2 = BC2 = ???  = 65

BC = 


______________________
Σ

Slide 26 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB= 42  = 16
rhz2 = AC2 =  72  = 49   +
  sz2 = BC2 = ???  = 65

BC = 


______________________
65=

Slide 27 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB= 42  = 16
rhz2 = AC2 =  72  = 49   +
  sz2 = BC2 = ???  = 65

BC = 


______________________
65=8,062...

Slide 28 - Tekstslide

5.4: Stelling van Pythagoras
Voorbeeld opg. 12: Bereken zijde BC.

rhz= AB= 42  = 16
rhz2 = AC2 =  72  = 49   +
  sz2 = BC2 = ???  = 65

BC = 
Dus BC       8,1 cm

______________________
65=8,062...

Slide 29 - Tekstslide

Huiswerk
Maken:
blz. 22: Opg. 45, 46, 47 en55

Nakijken:
Alles wat je gemaakt hebt van H5

timer
4:00
Achter de les

Slide 30 - Tekstslide

Leerdoelen besproken
Je weet wat een rechthoekige driehoek is.

Je kunt in een rechthoekige driehoek de
rechthoekszijden en 
de schuine zijde benoemen.
H6: Stelling van Pythagoras
VK
6.1: Zijden benoemen
6.2: De stelling van Pythagoras
6.3: De stelling van Pythagoras toepassen
6.4: Doorsnede
6.5: [Havo] Pythagoras in de ruimte

Slide 31 - Tekstslide

Leerdoelen behaald?
Je kunt in een rechthoekige driehoek de
rechthoekszijden en 
de schuine zijde benoemen.

Je kunt met behulp van de stelling van
Pythagoras de lengte van de schuine zijde 
berekenen.
H6: Stelling van Pythagoras
VK
6.1: Zijden benoemen
6.2: De stelling van Pythagoras
6.3: De stelling van Pythagoras toepassen
6.4: Doorsnede
6.5: [Havo] Pythagoras in de ruimte
H5: De stelling van Pythagoras

VK: Kwadraat en rekenvolgorde
5.1: kwadraten en wortels
5.2: machten
5.3: Zijden benoemen
5.4: De stelling van Pythagoras
5.5: De stelling van Pythagoras toepassen

Slide 32 - Tekstslide

5.4: Stelling van Pythagoras
ene rechthoekszijde2 + andere rechthoekszijde2 = schuine zijde2
Schema:

rhz2
rhz2                            +
  sz2

_______________

Slide 33 - Tekstslide

Welk leerpunt neem je mee uit deze les?

Slide 34 - Woordweb

Hierna volgen enkele filmpjes die je kunnen helpen met het behalen van de leerdoelen.
Hierna volgen enkele filmpjes die je kunnen helpen met het behalen van de leerdoelen.
Hierna volgen enkele filmpjes die je kunnen helpen met het behalen van de leerdoelen.

Slide 35 - Tekstslide

Slide 36 - Video

Slide 37 - Video

Slide 38 - Video

Slide 39 - Video

Slide 40 - Video