H2.4 B1HV Dichtheid (Les 3)

Pak alvast:
  • Je schrift (aantekeningen) + pen 
  • Rekenmachine
1 / 31
volgende
Slide 1: Tekstslide
Nask / TechniekMiddelbare schoolhavo, vwoLeerjaar 1

In deze les zitten 31 slides, met interactieve quizzen, tekstslides en 1 video.

time-iconLesduur is: 60 min

Onderdelen in deze les

Pak alvast:
  • Je schrift (aantekeningen) + pen 
  • Rekenmachine

Slide 1 - Tekstslide

Deze slide heeft geen instructies

Wat gaan we deze les doen?
  1. Zelfstandig:                                  -Klein testje                     
  2. Klassikaal:                                       -Drijven/zinken/zweven               -Weerballon                                  
  3. Zelfstandig:                                    -Proef 6                                                      

Slide 2 - Tekstslide

Deze slide heeft geen instructies

Herhaling H2.3
Herhaling H2.4

Slide 3 - Tekstslide

Demo 7
Doel: demonstreren hoe geluidstrillingen onderzocht kunnen worden met behulp van een oscilloscoop.
Nodig: oscilloscoop, toongenerator, luidspreker, microfoon, stemvork op klankkast, hamertje, (diverse muziekinstrumenten).
Uitvoering:
– Sluit de toongenerator aan op de oscilloscoop. Stel de toongenerator in op 1 Hz. Stel de tijdbasis van de oscilloscoop in op 0,5 s/div. Op het scherm is dan duidelijk een trillend punt te zien.
– Leg uit dat de uitwijking van het punt bepaald wordt door de grootte van de spanning die de toongenerator levert. Doordat de spanning steeds verandert, beweegt het punt steeds op en neer.
Leerdoelen

Slide 4 - Tekstslide

Deze slide heeft geen instructies

2.4.3 Je kunt de dichtheid van een stof bepalen als de massa en het volume gegeven zijn.

Oefenen









7,0 g/cm³


 

Slide 5 - Tekstslide

Deze slide heeft geen instructies

Herhaling
EXTRA
Een kubus heeft een massa van 23 gram en een dichtheid van 7,8 g/cm³. 
Bereken het volume van de kubus
Gegevens


Gevraagd

Berekening





Slide 6 - Tekstslide

Deze slide heeft geen instructies

2.4.3 Je kunt de dichtheid van een stof bepalen als de massa en het volume gegeven zijn.

Oefenen
1. Een blokje met afmetingen 2,0 cm x 4,0 cm x 6,0 cm heeft een massa van 163,2 gram. Bereken de dichtheid van het blokje. 
 
2. Een cilinder met een straal (r) van 4,0 cm en een hoogte (h) van 6,0 cm heeft een massa van 2,11 kg. Bereken de dichtheid van de cilinder.

3. Evelien heeft in haar tuin een romeinse munt gevonden. Ze wil graag weten waarvan deze munt is gemaakt. Ze meet een hoogte van 4 mm en een straal van 2 cm. De munt heeft een massa van 45 gram. Kan jij achterhalen van welk materiaal deze munt is gemaakt?

 

STAPPEN:
1. Gegevens
2. Gevraagd
3. Berekening

Slide 7 - Tekstslide

Deze slide heeft geen instructies

2.4.3 Je kunt de dichtheid van een stof bepalen als de massa en het volume gegeven zijn.

Oefenen
1. Een blokje met afmetingen 2,0 cm x 4,0 cm x 6,0 cm heeft een massa van 163,2 gram. Bereken de dichtheid van het blokje. 









3,4 g/cm³

 

Slide 8 - Tekstslide

Deze slide heeft geen instructies

2.4.3 Je kunt de dichtheid van een stof bepalen als de massa en het volume gegeven zijn.

Oefenen
2. Een cilinder met een straal (r) van 4,0 cm en een hoogte (h) van 6,0 cm heeft een massa van 2,11 kg. Bereken de dichtheid van de cilinder









7,0 g/cm³


 

Slide 9 - Tekstslide

Deze slide heeft geen instructies

2.4.3 Je kunt de dichtheid van een stof bepalen als de massa en het volume gegeven zijn.

Oefenen
3. Ze meet een hoogte van 4 mm en een straal van 2 cm. De munt heeft een massa van 45 gram. Van welk materiaal is de munt gemaakt? 
Gegevens
h = 4 mm = 0,4 cm
straal = 2 cm
massa = 45 g
Gevraagd
dichtheid (p) = ?
Formule:
V = pi * r² * h & p = m / V
Uitwerking
V = pi * r² * h = 3,14 • 2² • 0,4 = 5,0 cm³
p = m / V = 45 / 5,0 = 9,0 g/cm³

 

 


Slide 10 - Tekstslide

Deze slide heeft geen instructies

2.4.3 Je kunt de dichtheid van een stof bepalen als de massa en het volume gegeven zijn.

Oefenen
3. Ze meet een hoogte van 4 mm en een straal van 2 cm. De munt heeft een massa van 45 gram. Van welk materiaal is de munt gemaakt? 
Gegevens
h = 4 mm
straal = 2 cm
massa = 45 g
Gevraagd
dichtheid (p) = ?
Formule:
V = pi * r² * h & p = m / V
Uitwerking
V = pi * r² * h = 3,14 • 2² • 0,4 = 5,0 cm³
p = m / V = 45 / 5,0 = 9,0 g/cm³

 

 


Slide 11 - Tekstslide

Deze slide heeft geen instructies

2.4.3 Je kunt de dichtheid van een stof bepalen als de massa en het volume gegeven zijn.

Oefenen
3. Ze meet een hoogte van 4 mm en een straal van 2 cm. De munt heeft een massa van 45 gram. Van welk materiaal is de munt gemaakt? 
Gegevens
h = 4 mm = 0,4 cm
straal = 2 cm
massa = 45 g
Gevraagd
dichtheid (p) = ?
Formule:
V = pi * r² * h & p = m / V
Uitwerking
V = pi * r² * h = 3,14 • 2² • 0,4 = 5,0 cm³
p = m / V = 45 / 5,0 = 9,0 g/cm³

 

 


Slide 12 - Tekstslide

Deze slide heeft geen instructies

2.4.3 Je kunt de dichtheid van een stof bepalen als de massa en het volume gegeven zijn.

Oefenen
3. Ze meet een hoogte van 4 mm en een straal van 2 cm. De munt heeft een massa van 45 gram. Van welk materiaal is de munt gemaakt? 
Gegevens
h = 4 mm = 0,4 cm
straal = 2 cm
massa = 45 g
Gevraagd
dichtheid (p) = ?
Formule:
V = pi * r² * h & p = m / V
Uitwerking
V = pi * r² * h = 3,14 • 2² • 0,4 = 5,0 cm³
p = m / V = 45 / 5,0 = 9,0 g/cm³

 

 


Slide 13 - Tekstslide

Deze slide heeft geen instructies

2.4.3 Je kunt de dichtheid van een stof bepalen als de massa en het volume gegeven zijn.

Oefenen
3. Ze meet een hoogte van 4 mm en een straal van 2 cm. De munt heeft een massa van 45 gram. Van welk materiaal is de munt gemaakt? 
Gegevens
h = 4 mm = 0,4 cm
straal = 2 cm
massa = 45 g
Gevraagd
dichtheid (p) = ?
Formule:
V = pi * r² * h & p = m / V
Uitwerking
V = pi * r² * h = 3,14 • 2² • 0,4 = 5,0 cm³
p = m / V = 45 / 5,0 = 9,0 g/cm³

 

 


Slide 14 - Tekstslide

Deze slide heeft geen instructies

2.4.3 Je kunt de dichtheid van een stof bepalen als de massa en het volume gegeven zijn.

Oefenen
3. Ze meet een hoogte van 4 mm en een straal van 2 cm. De munt heeft een massa van 45 gram. Van welk materiaal is de munt gemaakt? 
Gegevens
h = 4 mm = 0,4 cm
straal = 2 cm
massa = 45 g
Gevraagd
dichtheid (p) = ?
Formule:
V = pi * r² * h & p = m / V
Uitwerking
V = pi * r² * h = 3,14 • 2² • 0,4 = 5,0 cm³
p = m / V = 45 / 5,0 = 9,0 g/cm³

 

 


Slide 15 - Tekstslide

Deze slide heeft geen instructies

2.4.4 Je kunt aan de hand van de dichtheid uitleggen waarom een stof zinkt, zweeft of drijft.

Drijven, zweven of zinken

Slide 16 - Tekstslide

Deze slide heeft geen instructies

Slide 17 - Video

Deze slide heeft geen instructies

2.4.4 Je kunt aan de hand van de dichtheid uitleggen waarom een stof zinkt, zweeft of drijft.

Drijven, zweven of zinken
  • Drijven: dichtheid kleiner dan water
  • Zinken: dichtheid groter dan water
  • Drijven: dichtheid gelijk aan water

Slide 18 - Tekstslide

Deze slide heeft geen instructies

2.4.5 Je kunt aan de hand van dichtheid van stoffen uitleggen waarom een gas opstijgt (EXTRA)

Slide 19 - Tekstslide

Deze slide heeft geen instructies

2.4.5 Je kunt aan de hand van dichtheid van stoffen uitleggen waarom een gas opstijgt (EXTRA)

Slide 20 - Tekstslide

Deze slide heeft geen instructies

2.4.5 Je kunt aan de hand van dichtheid van stoffen uitleggen waarom een gas opstijgt (EXTRA)
EXTRA weerballon
  • Waarom stijgt een weerballon op?

Slide 21 - Tekstslide

Deze slide heeft geen instructies

2.4.5 Je kunt aan de hand van dichtheid van stoffen uitleggen waarom een gas opstijgt (EXTRA)
Weerballon
  • Waarom stijgt een weerballon op?
  • Dichtheid Helium (ρ = 0,000 178 g/cm3). 
  • Een ballon stijgt op als de dichtheid ervan kleiner is dan die van lucht: (ρ = 0,001 293 g/cm3).

Slide 22 - Tekstslide

Deze slide heeft geen instructies

...
Tekst

Slide 23 - Tekstslide

Deze slide heeft geen instructies

...
Tekst

Slide 24 - Tekstslide

Deze slide heeft geen instructies

Slide 25 - Tekstslide

Demo 7
Doel: demonstreren hoe geluidstrillingen onderzocht kunnen worden met behulp van een oscilloscoop.
Nodig: oscilloscoop, toongenerator, luidspreker, microfoon, stemvork op klankkast, hamertje, (diverse muziekinstrumenten).
Uitvoering:
– Sluit de toongenerator aan op de oscilloscoop. Stel de toongenerator in op 1 Hz. Stel de tijdbasis van de oscilloscoop in op 0,5 s/div. Op het scherm is dan duidelijk een trillend punt te zien.
– Leg uit dat de uitwijking van het punt bepaald wordt door de grootte van de spanning die de toongenerator levert. Doordat de spanning steeds verandert, beweegt het punt steeds op en neer.

Slide 26 - Tekstslide

Demo 7
Doel: demonstreren hoe geluidstrillingen onderzocht kunnen worden met behulp van een oscilloscoop.
Nodig: oscilloscoop, toongenerator, luidspreker, microfoon, stemvork op klankkast, hamertje, (diverse muziekinstrumenten).
Uitvoering:
– Sluit de toongenerator aan op de oscilloscoop. Stel de toongenerator in op 1 Hz. Stel de tijdbasis van de oscilloscoop in op 0,5 s/div. Op het scherm is dan duidelijk een trillend punt te zien.
– Leg uit dat de uitwijking van het punt bepaald wordt door de grootte van de spanning die de toongenerator levert. Doordat de spanning steeds verandert, beweegt het punt steeds op en neer.

Slide 27 - Tekstslide

Demo 7
Doel: demonstreren hoe geluidstrillingen onderzocht kunnen worden met behulp van een oscilloscoop.
Nodig: oscilloscoop, toongenerator, luidspreker, microfoon, stemvork op klankkast, hamertje, (diverse muziekinstrumenten).
Uitvoering:
– Sluit de toongenerator aan op de oscilloscoop. Stel de toongenerator in op 1 Hz. Stel de tijdbasis van de oscilloscoop in op 0,5 s/div. Op het scherm is dan duidelijk een trillend punt te zien.
– Leg uit dat de uitwijking van het punt bepaald wordt door de grootte van de spanning die de toongenerator levert. Doordat de spanning steeds verandert, beweegt het punt steeds op en neer.

Slide 28 - Tekstslide

Demo 7
Doel: demonstreren hoe geluidstrillingen onderzocht kunnen worden met behulp van een oscilloscoop.
Nodig: oscilloscoop, toongenerator, luidspreker, microfoon, stemvork op klankkast, hamertje, (diverse muziekinstrumenten).
Uitvoering:
– Sluit de toongenerator aan op de oscilloscoop. Stel de toongenerator in op 1 Hz. Stel de tijdbasis van de oscilloscoop in op 0,5 s/div. Op het scherm is dan duidelijk een trillend punt te zien.
– Leg uit dat de uitwijking van het punt bepaald wordt door de grootte van de spanning die de toongenerator levert. Doordat de spanning steeds verandert, beweegt het punt steeds op en neer.
Aan de slag!
  1. Zelfstandig:                                 -Klein testje 
  2. Klassikaal:                                       -Drijven/zinken/zweven               -Weerballon                                 
  3. Zelfstandig:                                   -Practicum                                    -Leren: test jezelf of samenvatting                                                      

Slide 29 - Tekstslide

Deze slide heeft geen instructies

Schrijf 3 dingen op die je deze les hebt geleerd.

Slide 30 - Open vraag

Deze slide heeft geen instructies

Stel 1 vraag over iets dat je nog niet zo goed hebt begrepen.

Slide 31 - Open vraag

Deze slide heeft geen instructies