This lesson contains 35 slides, with interactive quizzes and text slides.
Lesson duration is: 45 min
Items in this lesson
Leerdoelen voor deze les:
Betekenis van uitkomst discriminant
Kwadratische vergelijkingen oplossen
Slide 1 - Slide
Om de coördinaten van de snijpunten van de parabool
y = ax2 + bx + c met de x-as te berekenen, los je de vergelijking
ax2 + bx + c = 0 op.
Het aantal oplossingen kan twee, één of nul zijn. Dat aantal hangt af van de discriminant. Dus het aantal snijpunten van de grafiek van f met de x-as hangt af van de waarde van D.
D > 0: twee oplossingen dus de parabool heeft twee snijpunten met de x-as.
D = 0: één oplossing dus de parabool heeft één punt met de x-as gemeenschappelijk. De parabool raakt de x-as.
D < 0: geen oplossingen, dus de parabool heeft geen snijpunten met de x-as.
Slide 2 - Slide
Om de coördinaten van de snijpunten van de parabool
y = ax2 + bx + c met de x-as te berekenen, los je de vergelijking
ax2 + bx + c = 0 op.
Het aantal oplossingen kan twee, één of nul zijn. Dat aantal hangt af van de discriminant. Dus het aantal snijpunten van de grafiek van f met de x-as hangt af van de waarde van D.
D > 0: twee oplossingen dus de parabool heeft twee snijpunten met de x-as.
D = 0: één oplossing dus de parabool heeft één punt met de x-as gemeenschappelijk. De parabool raakt de x-as.
D < 0: geen oplossingen, dus de parabool heeft geen snijpunten met de x-as.
Slide 3 - Slide
Om de coördinaten van de snijpunten van de parabool
y = ax2 + bx + c met de x-as te berekenen, los je de vergelijking
ax2 + bx + c = 0 op.
Het aantal oplossingen kan twee, één of nul zijn. Dat aantal hangt af van de discriminant. Dus het aantal snijpunten van de grafiek van f met de x-as hangt af van de waarde van D.
D > 0: twee oplossingen dus de parabool heeft twee snijpunten met de x-as.
D = 0: één oplossing dus de parabool heeft één punt met de x-as gemeenschappelijk. De parabool raakt de x-as.
D < 0: geen oplossingen, dus de parabool heeft geen snijpunten met de x-as.
Slide 4 - Slide
Slide 5 - Slide
Geef in een schets de ligging aan van de parabool
ten opzichte van de x-as.
a = 2, b = –3 en c = –1
D= 17 dus D>0 betekent 2 snijpunten. a=2 is een postitief getal dus een dalparabool
D=(−3)2−4⋅2⋅−1=17
y=2x2−3x−1
Slide 6 - Slide
Geef in een schets de ligging aan van de parabool
ten opzichte van de x-as.
a = 2, b = –3 en c = –1
D= 17 dus D>0 betekent 2 snijpunten. a=2 is een postitief getal dus een dalparabool
D=(−3)2−4⋅2⋅−1=17
y=2x2−3x−1
Slide 7 - Slide
Geef in een schets de ligging aan van de parabool
ten opzichte van de x-as.
a = 2, b = –3 en c = –1
D= 17 dus D>0 betekent 2 snijpunten. a=2 is een postitief getal dus een dalparabool
D=(−3)2−4⋅2⋅−1=17
y=2x2−3x−1
Slide 8 - Slide
Geef in een schets de ligging aan van de parabool
ten opzichte van de x-as.
a = 2, b = –3 en c = –1
D= 17 dus D>0 betekent 2 snijpunten. a=2 is een postitief getal dus een dalparabool
D=(−3)2−4⋅2⋅−1=17
y=2x2−3x−1
Slide 9 - Slide
Geef in een schets de ligging aan van de parabool
ten opzichte van de x-as.
a = 2, b = –3 en c = –1
D= 17 dus D>0 betekent 2 snijpunten. a=2 is een postitief getal dus een dalparabool
D=(−3)2−4⋅2⋅−1=17
y=2x2−3x−1
Slide 10 - Slide
Sleep de antwoorden naar de juiste plek in de zinnen.
Als D>0 (positief) dan heb je ... oplossing(en)
Als D=0 dan heb je ... oplossing(en)
Als D<0 (negatief) dan heb je ... oplossing(en)
2
1
0
Slide 11 - Drag question
Nog even herhalen
Slide 12 - Slide
D<0
a= 4
D>0
a=3
D=0
a=-3
D>0
a=-4
Slide 13 - Drag question
We hebben 3 methoden geleerd om een vergelijking op te lossen
Ontbinden in factoren
Met de abc-formule
We gaan ze alle drie bekijken
x2=c
Slide 14 - Slide
Methode 1
Slide 15 - Slide
Methode 2
Slide 16 - Slide
Methode 3
Slide 17 - Slide
Aanpak:
We gaan samen wat voorbeelden bekijken, doe goed mee zodat je dit straks ook alleen kan.
Slide 18 - Slide
VOORBEELD 1
Slide 19 - Slide
Los op , geef je antwoord in 2 decimalen
x2−6=0
Ja, ik kan de vergelijking schrijven als
x2=6
Slide 20 - Slide
Los op , geef je antwoord in 2 decimalen
x2−6=0
Ja, ik kan de vergelijking schrijven als
x2=6
Slide 21 - Slide
Los op , geef je antwoord in 2 decimalen
x2−6=0
x2=6
√
√
x=√6
x=−√6
v
x2−6=0
+6 +6
x=2,45
v
x=−2,45
Slide 22 - Slide
VOORBEELD 2
Slide 23 - Slide
Los op
x2+6x=7
Nee, ik kan de vergelijking niet schrijven als
x2=c
Slide 24 - Slide
Los op
x2+6x=7
Eerst de vergelijking "goed" schrijven
x2+6x−7=0
Slide 25 - Slide
Los op
x2+6x=7
Eerst de vergelijking "goed" schrijven
Ja, het lukt om te ontbinden
x2+6x−7=0
(x−1)(x+7)=0
x−1=0
x+7=0
v
x=1
v
x=−7
Slide 26 - Slide
VOORBEELD 3
Slide 27 - Slide
Los op , geef je antwoord in 2 decimalen
x2+6x=25
Nee, ik kan de vergelijking niet schrijven als
x2=c
Slide 28 - Slide
Los op , geef je antwoord in 2 decimalen
x2+6x=25
Eerst de vergelijking "goed" schrijven
x2+6x−25=0
Slide 29 - Slide
Los op , geef je antwoord in 2 decimalen
x2+6x=25
Eerst de vergelijking "goed" schrijven
Ontbinden in factoren lukt niet. Er zijn niet 2 getallen te vinden die als product -25 hebben en als som +6.
x2+6x−25=0
Slide 30 - Slide
Los op , geef je antwoord in 2 decimalen
x2+6x=25
a=1 b=6 c=-25 D = 62 - 4 x 1 x -25 = 136 invullen in abc-formule geeft
x2+6x−25=0
x=2⋅1−6+√136=2,83
x=2⋅1−6−√136=−8,83
Slide 31 - Slide
Los op , geef je antwoord in 2 decimalen
x2+6x=25
a=1 b=6 c=-25 D = 62 - 4 x 1 x -25 = 136 invullen in abc-formule geeft
x+6x−25=0
x=2⋅1−6+√136=2,83
x=2⋅1−6−√136=−8,83
Slide 32 - Slide
Los op , geef je antwoord in 2 decimalen
x2+6x=25
a=1 b=6 c=-25 D = 62 - 4 x 1 x -25 = 136 invullen in abc-formule geeft
x2+6x−25=0
x=2⋅1−6+√136=2,83
x=2⋅1−6−√136=−8,83
Slide 33 - Slide
Nu volgt een (sleep)vraag
Slide 34 - Slide
Sleep de juiste oplosmethode naar de formules
x²+4=0
x²+4x=0
x²+4x+3=0
x²+4x-3=0
x2=c
abc-formule
Ontbinden in factoren (enkele haakjes)
Ontbinden in factoren (dubbele haakjes/som-product methode)