3.2: Krachten meten

3.2: Krachten meten
1 / 25
next
Slide 1: Slide
NatuurkundeMiddelbare schoolvmbo g, t, mavoLeerjaar 3

This lesson contains 25 slides, with interactive quizzes and text slides.

time-iconLesson duration is: 15 min

Items in this lesson

3.2: Krachten meten

Slide 1 - Slide

Kracht herkennen
Krachten kan je niet zien, dus hoe weten we dat deze bestaan?

Slide 2 - Slide

Wat kan een kracht?
Een kracht kan ook op drie manieren zorgen voor een verandering!
- Vorm van een voorwerp
- Snelheid van een voorwerp
- Richting van een voorwerp

Slide 3 - Slide

Soorten krachten
Er zijn veel verschillende soorten voorwerpen, welke voorbeelden van deze krachten kan je bedenken?

- Spierkracht
- Veerkracht
- Spankracht
- Zwaartekracht
- Magnetische kracht

Slide 4 - Slide

Welke voorbeelden van krachten kun je noemen? Schrijf op als: Veerkracht = de veer in een pen die terugveert na het klikken van je pen

Slide 5 - Open question

Spierkracht
Veerkracht
Spankracht
Zwaartkracht
Magnetische kracht

Slide 6 - Drag question

Wat is een kracht?
Een kracht heeft 3 dingen:
- Een aangrijpingspunt
- Een richting
- Een grootte

Slide 7 - Slide

Een veer uitrekken

Slide 8 - Slide

Krachtmeters

Slide 9 - Slide

Eenheid krachten
Krachten (F) meten we in Newton.
Een kracht kan je meten met een krachtmeter: bijvoorbeeld een veerunster

Zwaartekracht (Fz) bereken je door de massa in kilogram (kg) keer 10 te doen: Fz (N) = massa van het voorwerp x 10

Slide 10 - Slide

Zwaartekracht
Stel je hebt een steen van 6 kg, hoeveel Newton aan zwaartekracht werkt er dan op die steen?


Stel je hebt een pak suiker van 500 gram, hoeveel Newton aan zwaartekracht werkt er dan op dat pak suiker?

Slide 11 - Slide

Huiswerk: alle opdrachten 3.2

Slide 12 - Slide

4.1: Krachten

Slide 13 - Slide

4.2: Kracht en versnelling
Versnelling: de aandrijvingskracht (dus bijvoorbeeld spierkracht) is groter dan de wrijvingskracht
Vertragen/remmen: de de aandrijvingskracht is kleiner dan de wrijvingskracht

Als de nettokracht 0 Newton is dan heb je een constante snelheid. 

Slide 14 - Slide

4.2: Kracht en versnelling
Welke wrijvingskrachten zijn er bij een rijdende scooter?

  • Rolwrijving
  • Luchtwrijving

Slide 15 - Slide

4.2: Kracht en versnelling
Snelheid meten we in:
- m/s (meter per seconde)
- km/h (kilometer per uur)

dus: snelheid = afstand / tijd
v = s / t

Slide 16 - Slide

4.2: Kracht en versnelling
We kunnen een snelheid-tijd-diagram gebruiken om te bepalen of iemand versnelt/vertraagt/gelijke snelheid rijdt

Slide 17 - Slide

4.3: Snelheid

Slide 18 - Slide

4.3: Snelheid
36 km/h -- x1000--> 36000 m/h -- :3600--> 10 m/s

van km naar m: x 1000
van uur naar seconde: 
1 uur x 60 = 60 minuten, 60 min x 60 = 3600 seconden

Slide 19 - Slide

4.3: Snelheid
We rijden eigenlijk nooit 1 constante snelheid, dus gebruiken we vaak: gemiddelde snelheid

gemiddelde snelheid = afstand / tijd
vgem = s / t

Slide 20 - Slide

4.3: Snelheid
Snelheid kunnen we berekenen met een afstand-tijd-diagram:

Slide 21 - Slide

4.4: Hefbomen
Een hefboom heeft altijd een draaipunt, een korte en een lange arm. 
 

Slide 22 - Slide

4.4: Hefbomen
Als twee krachten in evenwicht zijn heb je de volgende formule:

arm1 x kracht1 = arm2 x kracht2

Slide 23 - Slide

4.4: Hefbomen
arma x krachta = armb x krachtb
arma = 5 meter, armb = 1 meter, krachtb = 500 N 
Hoe groot moet krachta minimaal zijn om de steen op te tillen?

Slide 24 - Slide

4.4: Hefbomen
5 x krachta = 1 x 500
krachta = 100 N
arma = 5 meter, armb = 1 meter, krachtb = 500 N 


Slide 25 - Slide