2209019 start statistiek incl berekening

Farmaceutisch rekenen
Rekenen met capsules 
Neem voor deze les altijd je rekenmachine mee!
1 / 25
next
Slide 1: Slide
FARMBOStudiejaar 2

This lesson contains 25 slides, with interactive quizzes and text slides.

time-iconLesson duration is: 30 min

Items in this lesson

Farmaceutisch rekenen
Rekenen met capsules 
Neem voor deze les altijd je rekenmachine mee!

Slide 1 - Slide

This item has no instructions

Rekenen met capsules 
  • Hoeveelheden bij bereiden 
  • Benodigde volume 
  • Eindcontrole 
  • Capsules uit tabletten 

Slide 2 - Slide

This item has no instructions

R: Dexamethason caps 25mg da 40st
Hoeveel weeg je van alles af en tot welk volume vul je aan?

Slide 3 - Slide

dexa 25x40=1000mg
primoj 300x40= of meer 12000mg
100st=37ml
40st= 37/100 x 40=14,8ml


Schrijf op hoeveel je af gaat wegen van alles en tot welk volume je aanvult


Slide 4 - Open question

dexa 25x40=1000mg
primoj 300x40= of meer 12000mg
100st=37ml
40st= 37/100 x 40=14,8ml
Kwaliteitscontrole capsules
  1. Uiterlijk, geen deuken in de capsule  of poeder aan de buitenkant
  2. Afwijking van het gewicht, grens is 3%
  3. Spreiding = relatieve standaarddeviatie 
       RSD <3% vanaf 300 mg  
       RSD <4% tot 300 mg

Slide 5 - Slide

Homogeniteit van de inhoud is ook een belangrijk aspect, wat je tijdens de bereiding dient te waarborgen.  
Beoordeel of de capsules goed gesloten zijn en niet ingedeukt, allemaal. Met deuk dien je te verwerpen.
Voor controle selecteer je 10 capsules, hoeken en midden aselectief.
Juiste verpakking, goed gesloten kunststof of glazen flacon.
Etiket vermelden niet openmaken, heel doorslikken tenzij anders is voorgeschreven. Bij grotere capsules zittend of staand innemen met veel water (glas).
Bewaartermijn 1 jaar tenzij FNA

Inleiding statistiek

Slide 6 - Slide

This item has no instructions

Het gemiddelde 
Het gemiddelde wordt berekend door de gegevens bij elkaar op te tellen en te delen door het aantal gegevens. Het gemiddelde wordt vaak aangegeven met x met een streepje erboven \bar{x}

Slide 7 - Slide

This item has no instructions

De afwijking 

Slide 8 - Slide

This item has no instructions

De spreiding 
De standaarddeviatie of standaardafwijking  is een maat voor de spreiding van een rij getallen om het gemiddelde. 
Dit zegt iets over de verschillen tussen bijv het gewicht van capsules onderling.



Hier is een hele moeilijke formule voor maar je kan het ook heel makkelijk uitrekenen met je rekenmachine. Zie de volgende dia 

Slide 9 - Slide

This item has no instructions

Maak de opdracht
Statistiek inleiding 

Slide 10 - Slide

This item has no instructions

Rekenen met capsules
Berekenen van de standaarddeviatie = S op de rekenmachine:
Het gemiddeld gewicht (a) en spreiding (s) berekenen met casio fx 82

Maak eerst het geheugen leeg:           SHIFT CLR 2 =
Zet de rekenmachine op statistiek:   MODE 2
Voer de data in: 123 M+; 124 M+; enz (dus cijfer vervolgens knop M+) AC
Bereken:               SHIFT 2
het gemiddelde:         1 = (= gemiddelde )
de spreiding:               3 = (= spreiding xσn-1 ) dit is S

Slide 11 - Slide

Standaarddeviatie is de mate van spreiding van getallen rondom het gemiddelde van deze getallen.
Bij een getallenreeks wil je weten of alle getallen rondom het gemiddelde liggen of juist er ver vanaf. Bij een hoge spreiding liggen de getallen ver uit elkaar. 
Hoe hoger de range, verschil tussen laagste en hoogste getal uit de reeks, des te groter de standaarddeviatie. 
Afwijking van de inhoud van de capsules
Dit percentage geeft in principe het verlies weer als gevolg van handelingen tijdens de bereiding van het poedermengsel.
  
Het verschil tussen theoretisch en praktisch gewicht met een grens van 3%

Je hebt dus het theoretische gewicht en het praktisch gewicht nodig



P-T= x 100%
   T

V= (c-e) x100%      
         e
of 

Slide 12 - Slide

Verlies als gevolg door: restanten in de mortier(=adsorptie) en knoeien .
Is de afwijking groter dan 3% dan kan dat duiden op een rekenfout of afweegfout, indien je netjes gewerkt hebt. Of teveel verlies door geen goede stromingseigenschappen → een grotere capsulemaat of verhoog de chargegrootte.

Theoretische & praktische gewicht

Theoretische gewicht van één capsules in mg (e)→  het totaal van alle grondstoffen (inclusief hulpstoffen) in  grammen (d) ÷ het aantal capsules (n)
 e= (1000 x d)÷ n


Praktische gewicht van één capsules in mg (c), betreft dus alleen de inhoud van de capsule!  →
 - gemiddelde gewicht van 1 lege capsule (b) (weeg er dus 10, dat totaal ÷ 10) 
 - weeg 10 gevulde capsules afzonderlijk en bereken het gemiddelde gewicht van 1 capsule (a)
 c = a - b



Slide 13 - Slide

De letters tussen haakjes verwijzen naar de formule die gebruikt worden op een CBV
Spreiding = relatieve standaarddeviatie 
De relatieve standaarddeviatie (=rsd) ookwel variatiecoëfficiënt van de gewichten van de inhoud van 10 capsules. 

 RSD <3% vanaf 300 mg
 RSD <4% tot 300 mg

rsd= (s ÷ c)x 100%

Slide 14 - Slide

De rsd kan handmatig op rekenmachine uitgerekend worden.
S= standaarddeviatie = de mate van spreiding van getallen rondom het gemiddelde van deze getallen. C = praktisch gewicht
De standaardafwijking is gedefinieerd als de wortel uit de variantie
Gelukkig is er ook MB-weeg, waar de meeste bereidingsapotheken gebruik van maken.

Rekenen met capsules
Eindcontrole CBV

Slide 15 - Slide

This item has no instructions

Rekenen met capsules
Berekenen van de standaarddeviatie = S op de rekenmachine:
Het gemiddeld gewicht (a) en spreiding (s) berekenen met casio fx 82

Maak eerst het geheugen leeg:           SHIFT CLR 2 =
Zet de rekenmachine op statistiek:   MODE 2
Voer de data in: 123 M+; 124 M+; enz (dus cijfer vervolgens knop M+) AC
Bereken:               SHIFT 2
het gemiddelde:         1 = (= gemiddelde )
de spreiding:               3 = (= spreiding xσn-1 ) dit is S

Slide 16 - Slide

Standaarddeviatie is de mate van spreiding van getallen rondom het gemiddelde van deze getallen.
Bij een getallenreeks wil je weten of alle getallen rondom het gemiddelde liggen of juist er ver vanaf. Bij een hoge spreiding liggen de getallen ver uit elkaar. 
Hoe hoger de range, verschil tussen laagste en hoogste getal uit de reeks, des te groter de standaarddeviatie. 
Rekenen met capsules
Voer de volledige eindcontrole uit aan de hand van de onderstaande gegevens.

- aantal te maken capsules XXX; 
- hiervoor 6,01 g werkzame stof en 2,61 g hulpstof afgewogen; 
- 10 lege capsules wegen 0,598 g; 
- 10 gevulde capsules wegen achtereenvolgens;
 0,349 g, 0,346 g , 0,345 g, 0,345 g, 0,348 g, 0,338 g, 0,347g, 0,348g, 0,344g, 0,354g; 
s=4,09 mg 


Slide 17 - Slide

This item has no instructions

Rekenen met capsules
  • Gemiddeld leeggewicht in mg (b) → 10 lege capsules wegen 0,598 g = 598 mg 
                                                                               1 lege capsule weegt 598mg /10= 59,8 mg (b)
  • Gemiddeld gewicht capsule in mg (a) → g omzetten in mg, de gewichten bij elkaar optellen  

gemiddeld gewicht van een capsule = 3464 mg/10= 346.4 mg (a)

  • Theoretisch gewicht in mg (e) van 1 capsules →  e = (af te wegen stoffen (mg) + afgewogen vulstof (mg) / chargegrootte= ……..mg → = 6010 mg + 2610 mg / 30 =287,3 mg

  • Standaardafwijking in mg (s) → op de rekenmachine → s=4,09 mg (afgerond op 2 decimalen)




0349 mg +  346 mg + 345 mg + 345 mg + 348 mg + 338 mg +   347 mg + 348 mg + 344 mg + 354 mg = 3464mg



Slide 18 - Slide

This item has no instructions

Rekenen met capsules vervolg
  • Gemiddeld gewicht van de inhoud in mg (c) →  c = a - b → 
a= 346,4 mg ( gem. gewicht van een capsule)
b= 59,8 mg (gem leeggewicht capsule)
c= 346,4 mg - 59,8 mg=286,6 mg (c = gem gewicht van de inhoud)

  • Relatieve standaardafwijking in % (rsd) → s/c x 100% 
s= 4,09 (standaarddeviatie) ,    c= 286,6 mg (gem gewicht inhoud) →                                                    rsd= 4,09 mg/ 286,6 mg x 100%=1,43 %









EIS:
 Relatieve standaardeviatie (rsd);
inhoud capsule tot 300 mg: rsd < 4 %; akkoord / niet akkoord / n.v.t.
inhoud capsule vanaf 300 mg: rsd <3 %; akkoord / niet akkoord / n.v.t.

Slide 19 - Slide

This item has no instructions

Rekenen met capsules vervolg
  • Verschil tussen gemiddeld en theoretisch gewicht v %=(c - e) / e x 100%=........%
c= 286,6 mg (gem gewicht inhoud)
e= 287.3mg (theoretisch gewicht)


v= 286,6 mg-287,3 mg / 287,3 mg x 100%= -0.24%








EIS:
 EIS: v% moet liggen -3% en +3%;  akkoord / niet akkoord. 

Slide 20 - Slide

This item has no instructions

Nog een oefening
Voer de volledige eindcontrole uit aan de hand van de onderstaande gegevens.

- aantal te maken capsules XXX; 
- hiervoor 5,24 g werkzame stof en 1,61 g hulpstof afgewogen;
- 10 lege capsules wegen 0,288 g;
- 10 gevulde capsules wegen achtereenvolgens;
0,249 g, 0,246 g , 0,235 g, 0,245 g, 0,248 g, 0,238 g, 0,248g, 0,238g, 0,244g, 0,254g; 






Slide 21 - Slide

b= 28,8 mg
a= 244,5 mg
e= 228,33 mg
s= 5,89 mg
c= 215,7mg
rsd= 2,73%
v= -5,52%
rsd -> akkoord
V -> Niet akkoord 
Wat is er aan de hand? Wat is er niet goed gegaan?
Kon je de uitleg volgen?
0100

Slide 22 - Poll

This item has no instructions

Wat vind je nog moeilijk?

Slide 23 - Open question

This item has no instructions

MB weeg
MB weeg 

Slide 24 - Slide

Totale hoeveelheid ingevoerd
Afgerond gemiddelde. 
MB weeg
MB weeg 

Slide 25 - Slide

Verkeerde capsule maat