hfd. 3.4 sterkte en vervormbaarheid

 HS 3.4 materialen
  • Elastisch en plastische vervorming
  • relatieve rek = lengteverandering / beginlengte
  • spanning = kracht / oppervlakte
  • Elasticiteitsmodulus = spanning / relatieve rek
1 / 11
next
Slide 1: Slide
NatuurkundeMiddelbare schoolhavo, vwoLeerjaar 4

This lesson contains 11 slides, with interactive quizzes and text slides.

time-iconLesson duration is: 45 min

Items in this lesson

 HS 3.4 materialen
  • Elastisch en plastische vervorming
  • relatieve rek = lengteverandering / beginlengte
  • spanning = kracht / oppervlakte
  • Elasticiteitsmodulus = spanning / relatieve rek

Slide 1 - Slide

elastisiteit en vervorming 
Hoeveel een materiaal vervormt hangt af van de spanning in het materiaal, de treksterkte van het materiaal en de elasticiteitsmodulus van het materiaal. De spanning in een draad of stang is de uitgeoefende trekkracht per oppervlakte-eenheid van de dwarsdoorsnede.
waarin:
σ = spanning (N/m²)
F = kracht (N)
A = oppervlakte (m²)
σ=AF

Slide 2 - Slide

rek 
De relatieve rek is de verhouding tussen de uitrekking en de beginlengte.
waarin:
ε = rek (-)
Δl = uitrekking (m)
l0 = oorspronkelijke lengte (m)
De treksterkte van een materiaal is de maximale spanning van waaraf het materiaal blijvend vervormd is



ϵ=l0Δl

Slide 3 - Slide

Elasticiteitsmodus
De elasticiteitsmodulus is de spanning die nodig is om een materiaal een relatieve rek te geven van 100%.

waarin:
E = elasticiteitsmodus (N/m²)
σ = spanning (N/m²)
ε = rek (-)
E=ϵσ

Slide 4 - Slide

Treksterkte (BINAS) = die spanning waarbij het materiaal niet meer elastich maar plastisch vervormt.
Waarom daalt de grafiek zodra er insnoering plaatsvindt?
Wat stelt de steilheid van de ε,σ- grafiek voor?

Slide 5 - Slide

oefening 
Opgave 1
Een lift met een massa van 300 kg mag maximaal 800 kg aan massa vervoeren. De lift hangt aan een stalen kabel. Zonder belasting is de kabel 20 meter lang. Met maximale belasting wordt de kabel 0,50 cm langer.
a.  Bereken de spanning in de liftkabel.
b.  Bereken de diameter van de liftkabel bij maximale belasting.

Slide 6 - Slide

Bestudeer het onderstaande diagram:
a. Geef aan in welk gebied elastische en plastische vervorming plaatsvindt.
b. Geef aan in welk gebied de formule voor de elasticiteitsmodulus geldt.
c. Geef ook in de grafiek de treksterkte van het materiaal aan.


Slide 7 - Slide

HS 3.4 vervorming 

Slide 8 - Slide

Opgaven
Opgave 7 - WS
Als een spaak in het fietswiel wordt gemonteerd, wordt de spaak ook gespannen. Dit wordt voorspannen genoemd. Een bepaalde roestvrijstalen spaak krijgt een spanning van 190 MPa. De doorsnede van de spaak is 2,63 mm2.
a. Bereken de spankracht in de voorgespannen spaak.
b. Bereken hoeveel procent de voorgespannen spaak is uitgerekt.

Opgave 8 - WS
Tijdens het springen oefent een kangoeroe een maximale spanning van 27 MPa uit op de pees van de spier waarmee de kangoeroe afzet tegen de grond. De pees rekt daarbij 2,5% uit. De uitrekking van de pees is (vrijwel) lineair. Bereken de elasticiteitsmodulus van de pees.


 
Opgave 11 - WS
Bestudeer het onderstaande diagram:







a. Geef aan in welk gebied elastische en plastische vervorming plaatsvindt.
b. Geef aan in welk gebied de formule voor de elasticiteitsmodulus geldt.
c. Geef ook in de grafiek de treksterkte van het materiaal aan.


Slide 9 - Slide

antwoorden van de vragen insturen

Slide 10 - Open question

6 Aan een lang stuk rubber maak je een haak vast. Het rubber is 3,2 m lang, 2,0 mm breed en 1,5 mm dik. Aan deze haak hang je een emmer met water erin. De haak, de emmer en het water hebben samen een massa van 10 kg .
a Bereken de spanning in het rubber.
b Bereken hoe lang het rubber is als de emmer eraan hangt.
c Leg uit dat het rubber langer dan 3,2 m is, als je de emmer met de haak weer loshaalt.

Slide 11 - Open question