Les 2.3 Chemische synthese en ontleding

Les 2.3 Chemische synthese en ontleding
1 / 32
next
Slide 1: Slide
ScheikundeMiddelbare schoolvwoLeerjaar 3

This lesson contains 32 slides, with text slides.

time-iconLesson duration is: 50 min

Items in this lesson

Les 2.3 Chemische synthese en ontleding

Slide 1 - Slide

Planning

  • Nakijken 4 t/m 7 (blz 71)
  • 2.3 Chemische synthese
  • Maken opgaven
  • Exitkaart


Slide 2 - Slide

Nakijken 4 t/m 7 (blz 71)

Slide 3 - Slide

4
  • a) 2 C4H10(g) + 13 O2(g) → 8 CO2(g) + 10 H2O(l)
  • b) H2(g) + Cl2(g) → 2 HCl(l)
  • c) C6H12O6(aq) + 6 O2(g) → 6 CO2(g) + 6 H2O(l)

Slide 4 - Slide

5
  • a) CaC2(s) + H2O(l) → C2H2(g) + CaO(s)
  • b) 2 C2H2(g) + 5 O2(g) → 4 CO2(g) + 2 H2O(l)

Slide 5 - Slide

6
  • a) koolstoftetrachloride
  • b) CCl4(l) + 4 Na(s) → C(s) + 4 NaCl(s)

Slide 6 - Slide

7
  • a) Koolstofdisulfide bevat geen waterstofatomen en geen zuurstofatomen die na de reactie wel in de gevormde moleculen voorkomen. Het ligt dus voor de hand om aan te nemen dat water ook een beginstof is in deze reactie, omdat deze stof beide atoomsoorten bevat. 
  • b) CS2(aq) + 2 H2O(l) → 2 H2S(g) + CO2(g)
  • c) CS2(g) + 3 O2(g) → CO2(g) + 2 SO2(g)
  • d)  H2S(g) + 2 O2(g) → H2SO4(l)

Slide 7 - Slide

Les 2.3 Chemische synthese en ontleding
2.3.1 Je kunt uitleggen wat het belang is van chemische synthese.
2.3.2 Je kunt uitleggen wat een ontledingsreactie is.
2.3.3 Je kunt het verschil tussen thermolyse, elektrolyse en fotolyse uitleggen.
2.3.4 Je kunt verbindingen en elementen in verband brengen met ontleedbare en niet-ontleedbare stoffen.

Slide 8 - Slide

Chemische synthese
  • Chemische synthese: het maken van nieuwe stoffen door chemische reacties. (zoals voedingsstoffen, brandstoffen, medicijnen, metalen, kunststoffen, enz). 
  • Fotosynthese: voorbeeld van een synthese reactie in het biologische leven. 

Slide 9 - Slide

Fotosynthese

Slide 10 - Slide

Fotosynthese

Slide 11 - Slide

andere reacties
Productie van ijzer: 


Productie van koolstofmono-oxide: 

Slide 12 - Slide

ontleding(reactie)
  • Ontledingsreactie: als er uit één stof meerdere nieuwe stoffen ontstaan.
  • één beginstof --> twee of meer reactieproducten

Slide 13 - Slide

Voorbeeld ontledingsreactie
  • Als je brood in een reageerbuis verhit, treedt er een reactie op die je kunt vergelijken met het ontleden van hout. Het brood verdwijnt en er ontstaan koolstof, water en witte rook.

  • Hoe ziet het reactieschema eruit?
  • Brood (s) --> koolstof (s) + water (l) + witte rook (g)
  • Is dit een ontledingsreactie?
  • Ja! één beginstof, meerdere (3) reactieproducten



Slide 14 - Slide

Ontleedbare en niet-ontleedbare stoffen
  • Ontleedbare stoffen:  Bestaat uit twee of meer atoomsoorten (verbindingen)
  • H2O
  • C6H12O6
  • Niet-ontleedbare stoffen: Bestaat uit één atoomsoort. (elementen)
  • H2
  • O2
  • Au

Slide 15 - Slide

Slide 16 - Slide

Je kunt stoffen ontleden door middel van:
  • Thermolyse: ontleden doormiddel van warmte
  • Fotolyse: ontleden doormiddel van licht
  • Elektrolyse: ontleden doormiddel van elektrische stroom

Slide 17 - Slide

Ontleding
Thermolyse
Warmte
Fotolyse
Licht
Elektrolyse
Elektriciteit

Slide 18 - Slide

Thermolyse

Slide 19 - Slide

Elektrolyse

Slide 20 - Slide

Elektrolyse

Slide 21 - Slide

Fotolyse
Ontleding van waterstofperoxideoplossing

Slide 22 - Slide

Fotolyse

Slide 23 - Slide

Maken: 5, 6, 8, 9, 11 en 12 
(vanaf blz 79)

Slide 24 - Slide

5
  • a) Voor de pijl staan andere moleculen getekend dan na de pijl. Voor de pijl staat één soort molecuul. Dit moet dan een ontledingsreactie zijn.
  • b) Voor de pijl staan twee soorten moleculen getekend. Na de pijl staan dezelfde moleculen apart van elkaar getekend. Omdat de moleculen niet zijn veranderd, is dit geen chemische reactie maar een scheidingsmethode.

Slide 25 - Slide

5
  • c) Voor de pijl staan twee soorten moleculen, na de pijl twee andere soorten moleculen. Omdat de moleculen zijn veranderd, is dit een chemische reactie. Maar het is geen ontledingsreactie, omdat er meer dan één soort molecuul voor de pijl staat. 

Slide 26 - Slide

6
  • a) Omdat een tosti-ijzer erg heet wordt, is dit een ontledingsreactie van het brood (thermolyse).
  • b) Het zonlicht kan de kleurstoffen in de gordijnen ontleden, waardoor de kleuren verbleken. Het is dus een fotolyse.
  • c) Omdat uit aluminiumerts door de toevoer van elektrische energie twee andere stoffen ontstaan, moet dit een elektrolyse zijn.
  • d) Het strijkijzer maakt het wasgoed plaatselijk zó heet dat er thermolyse plaatsvindt.

Slide 27 - Slide

8
  • a) C(s) + O2(g) → CO2(g)
  • b) C(s) + CO2(g) → 2 CO(g)
  • c) C(s) + H2O(g) → CO(g) + H2(g)
  • d) links/rechts bij elkaar: C(s) + O2(g) + C(s) + CO2(g) → CO2(g) + 2 CO(g)
  •       formules bij elkaar zetten:2 C(s) + O2(g) + CO2(g) + → CO2(g) + 2 CO(g)
  •       CO2 links en rechts wegstrepen: 2 C(s) + O2(g) → 2 CO(g)
  • e) 8 CO(g) + 17 H2(g) → C8H18(l) + 8 H2O(l)

Slide 28 - Slide

9
  • a)  2 C(s) + TiO2(s) + 2 Cl2(g) → 2 CO(g) + TiCl4(s)
  • b) TiCl4(s) + 2 Mg(s) → Ti(s) + 2 MgCl2(s) 

Slide 29 - Slide

11
  • a)  Uit de beschrijving blijkt dat er alleen water reageert, dus voor de reactiepijl staat slechts één stof. Het moet dus een ontledingsreactie zijn. Omdat er voor het verlopen van de reactie een toevoer van elektrische energie nodig is, moet dit een elektrolyse zijn.
  • b) Watermoleculen bevatten twee waterstofatomen en één zuurstofatoom. Daaruit kunnen de elementen H2(g) en O2(g) ontstaan. Dit zijn beide gassen.

Slide 30 - Slide

11
  • c) 2 H2O(l) → 2 H2(g) + O2(g)
  • d) 2 H2(g) + O2(g) → 2 H2O(g)
  • e) Als er schone elektrische energie beschikbaar is, bijvoorbeeld van windmolens of zonnepanelen, kan uit water waterstofgas en zuurstofgas worden geproduceerd. Na transport kan dit waterstofgas worden gebruikt om energie te leveren voor de industrie, verwarming van huizen en verkeer. Uit deze proef blijkt dat voor de productie alleen de grondstof water nodig is en dat bij gebruik alleen water vrijkomt, wat geen milieuschade kan opleveren.

Slide 31 - Slide

12
  • a) C5H8N4O12(s) → 2 CO(g) + 3 CO2(g) + 4 H2O(g) + 2 N2(g)
  • b) 4 C3H5N3O9(s) → 12 CO2(g) + 10 H2O(g) + 6 N2(g) + O2(g)
  • c) 4 C7H5N3O6(s) → 21 C(s) + 7 CO2(g) + 10 H2O(g) + 6 N2(g)

Slide 32 - Slide