5.4 Meer genen in het spel

5.4 Meer genen in het spel
1 / 32
next
Slide 1: Slide
BiologieMiddelbare schoolvwoLeerjaar 4

This lesson contains 32 slides, with interactive quizzes and text slides.

time-iconLesson duration is: 80 min

Items in this lesson

5.4 Meer genen in het spel

Slide 1 - Slide

Leerdoelen 5.4 
  • Je kunt de kans op een bepaald genotype en fenotype bij nakomelingen afleiden bij dihybride kruisingen 
  • Je kunt de kans op een bepaald genotype en fenotype bij nakomelingen afleiden bij gekoppelde overerving 
  • Je kunt de kans op een bepaald genotype en fenotype bij nakomelingen afleiden bij polygene overerving 
  • Je kunt de werkwijze van klassieke veredeling en genetische modificatie en hun invloed op de genetische variatie beschrijven 
  • Je kunt uitleggen wat gentherapie is 

Slide 2 - Slide

Herhaling: 
Bij een monohybride kruising kijken we naar de overerving van 1 enkel gen.
- 'Gewoon' = autosomale overerving
- X-chromosomale overerving
- Intermediair fenotype (autosomaal)
- Multipele allelen met codominantie (autosomaal)
- Letale allelen (autosomaal)

Slide 3 - Slide

Dihybride kruising
Letten op 2 eigenschappen/ genen tegelijk.

Let op: er kunnen méér verschillende combinaties van allelen ontstaan bij het aanmaken van de geslachtscellen.

Slide 4 - Slide

twee soorten dihybride overerving

Slide 5 - Slide

Johann Mendel
' vader van de genetica '
1822 - 1884
zoon van akkerbouwer uit Silezie (nu: Tsjechie) goed in rekenen/wiskunde, nauwgezette man
'boekhouder' van bisschop van Brunn (Brno)

mocht jarenlang kruisingsexperimenten doen met erwten in tuin op binnenplaats klooster
publiceerde in 1866 bevindingen:
'Wetten van Mendel' 


Slide 6 - Slide

Kruising van de P generatie
Grote plant met groene erwten

AABB
Kleine plant met gele erwten

aabb
Fenotype


Genotype
P generatie

Slide 7 - Slide

Kruising van de P generatie
Grote plant met groene erwten

AABB


100% AB
Kleine plant met gele erwten

aabb


100% ab
Fenotype


Genotype


Geslachtscellen
generatie

Slide 8 - Slide

Resulteert in de F1 generatie
AB
ab
AaBb
F1 generatie

100% AaBb


Grote planten met groene erwten

Slide 9 - Slide

Kruising van de F1 generatie
Grote plant met groene erwten

AaBb


AB, Ab, aB en ab

Grote plant met groene erwten

AaBb


AB, Ab, aB en ab

Fenotype


Genotype


Geslachtscellen
F1 generatie

Slide 10 - Slide

Resulteert in de F2 generatie
AB
Ab
aB
ab
AB
AABB
AABb
AaBB
AaBb
Ab
AABb
AAbb
AaBb
Aabb
aB
AaBB
AaBb
aaBB
aaBb
ab
AaBb
Aabb
aaBb
aabb
F2 generatie



9/16 is groot met groene erwten
3/16 is klein met groene erwten
3/16 is groot met gele erwten
1/16 is klein met gele erwten

Slide 11 - Slide

Onthouden!
Een verhouding 9:3:3:1 van een combinatie van twee eigenschappen in de nakomelingen wijst altijd op een kruising van 2 voor beide eigenschappen heterozygote ouders.


Slide 12 - Slide

Oefenen dihybride kruising (1)
Bij mensen is het allel voor zwart haar (A) dominant over het allel voor blond haar (a). Het allel
voor krullend haar is (B) dominant over dat voor sluik haar (b). De genen zijn niet gekoppeld.  

Een vrouw met zwart krullend haar is heterozygoot voor beide eigenschappen. Ze verwacht  een kind van een man met blond, sluik haar. Ze hoopt dat het kind dezelfde haarkleur en haarvorm heeft als zij. Zij wil weten hoe groot de kans hierop is.

Slide 13 - Slide

Oefenen dihybride kruising (1)
a) Wat zijn de genotypes van de ouders?
b) Welk genotype moet het kind hebben als het dezelfde haarkleur en haarvorm als de
moeder heeft? 
c) Van welke ouder moet het kind allel A krijgen? Hoe groot is de kans hierop?
d) En van welke ouder allel B? Hoe groot is deze kans?
e) Hoe groot is dan de kans dat het kind dezelfde haarkleur en haarvorm heeft als
moeder?

Slide 14 - Slide

Oefenen dihybride kruising (1)
a) ♂ (vader) genotype aabb 
     ♀ (moeder) genotype AaBb
b) AABB of AaBB of AaBb of AaBB
c) Allel A van moeder, kans 50%
d) Allen B van moeder, kans 50%
e) 50% x 50% = 25%

Slide 15 - Slide

Oefenen dihybride kruising
Bij erwtenplanten is het allel voor ronde zaden (R) dominant over het allel voor hoekige zaden (r). Het allel voor gele zaadlobben (G) is dominant over het allel voor groene zaadlobben (g). De genenparen liggen in verschillende chromosomenparen.
 Men kruist een erwtenplant uit een rond zaad met gele zaadlobben, die voor beide eigenschappen heterozygoot is, met een erwtenplant uit een hoekig zaad met groene zaadlobben.
Welke verhouding van fenotypen verwacht je in de F1?

Slide 16 - Slide

Uitwerking

Slide 17 - Slide

Bij de mens is het allel voor het vermogen om PTC te proeven (P) dominant over dat voor het niet proeven van deze stof (p).
Het allel voor bruine ogen (B) is dominant over dat voor blauwe ogen (b).

Een vrouw, die heterozygoot is voor het gen oogkleur en heterozygoot is voor het gen “PTC proeven”, vormt eicellen die men als volgt kan aanduiden:

A
PP,Pp,Bb,bb.
B
Pp,Bb,Pb,pB
C
PB,Pb,pB,pb
D
PP,Pb,pB,bb

Slide 18 - Quiz

Bij een bepaalde planten wordt de bloemkleur bepaald wordt door twee onafhankelijke genen A en a en B en b. Als er in één of beide genen 1 of meer dominante allelen voorkomen, is de bloemkleur rood. Enkel dubbel homozygoot recessieve hebben witte bloemen. Bij een kruising tussen een plant met rode en een met witte bloemen ontstaat een F1 die ook bestaat uit planten met rode en witte bloemen en wel in de verhouding rood wit = 1 : 1.
Welk genotype hebben de ouders?
A
AABb X aaBB
B
Aabb X aaBb
C
AaBb X aabb
D
Aabb X aabb

Slide 19 - Quiz

Van een dihybride kruising van twee cavia's ZZKK x zzkk
(Z = zwart, is dominant over wit, K = ruwharig, is dominant over gladharig), waarvan de F1 dieren onderling worden doorgekruist, is het gedeelte van de F2 dat zwart-ruwharig is:
A
1/16
B
3/16
C
9/16
D
12/16

Slide 20 - Quiz

Bij de mens berust het vermogen om de bittere smaak van de stof PTC te proeven op een dominant allel T (niet proeven t).
Bruinogig B domineert over blauwogig b.
Welk deel van de kinderen, waarvan beide ouders het genotype TtBb hebben, zal naar verwachting niet-proever zijn en bruinogig? (De eigenschappen zijn niet geslachtsgebonden en erven onafhankelijk van elkaar over.)
A
1/4
B
3/16
C
1/16
D
3/8

Slide 21 - Quiz

Gekoppelde overerving
Letten op 2 eigenschappen/ genen tegelijk.
Waarbij de genen op 
hetzelfde chromosoom liggen.

Hierbij kan crossing over zorgen 
voor andere genotypen en fenotypen 
dan verwacht.

Slide 22 - Slide

Kruising van de P generatie
Groene erwten en dunne wortels

AABB
Gele erwten en dikke wortels

aabb
Fenotype


Genotype
P(arent) generatie
W
W

Slide 23 - Slide

Kruising van de P generatie
Groene erwten en dunne wortels

AABB


100% 
Gele erwten en dikke wortels

aabb


100% 
Fenotype


Genotype


Geslachtscellen
P(arent) generatie
W
W

Slide 24 - Slide

Resulteert in de F1 generatie
AB
ab
AaBb
F1 generatie

100% 


Grote planten met dunne wortels

Slide 25 - Slide

Kruising van de F1 generatie
Groene erwten en dunne wortels




Groene erwten en dunne wortels



Fenotype


Genotype


Geslachtscellen
F1 generatie
W
W

Slide 26 - Slide

Resulteert in de F2 generatie
AB
ab
AB
AABB
AaBb
ab
AaBb
aabb
F2 generatie

3/4 heeft groene erwten en dunne wortels
1/4 heeft gele erwten en dikke wortels

W
W

Slide 27 - Slide

Gekoppelde overerving
Gekoppelde overerving zorgt er voor dat allelen die geen functionele relatie hebben (bijvoorbeeld oogkleur en hoog cholesterol gehalte) toch samen overerven.

NB. Door crossing kunnen er toch andere genotypen en fenotypen voorkomen dan verwacht.

Slide 28 - Slide

Crossing over
Groene erwten en dunne wortels




Groene erwten en dunne wortels



Fenotype


Genotype


Geslachtscellen
F1 generatie
W
W
x

Slide 29 - Slide

Genetische modificatie
  • Klassieke veredeling = het fokken/kruisen van organismen met goede eigenschappen - duurt vaak lang!
  • Genetische modificatie = het bewust veranderen van het DNA van een organisme, bv door een stukje DNA toe te voegen
  • Een genetich gemodificeerd organisme is een transgeen organisme.
  • Een toepassing van genetische modificatie is gentherapie.

Slide 30 - Slide

genetische modificatie
Genetische modificatie

Slide 31 - Slide

Gentherapie

Slide 32 - Slide