WK11: Ethics in AI and Current Trends

Welcome Week 11
Ethics in AI and Current Trends
Module Lecturer: Dr Raghav Kovvuri
Email: raghav.kovvuri@ieg.ac.uk

1 / 13
suivant
Slide 1: Diapositive
Artificial Intelligence ProgrammingHigher Education (degree)

Cette leçon contient 13 diapositives, avec diapositives de texte.

Éléments de cette leçon

Welcome Week 11
Ethics in AI and Current Trends
Module Lecturer: Dr Raghav Kovvuri
Email: raghav.kovvuri@ieg.ac.uk

Slide 1 - Diapositive

Cet élément n'a pas d'instructions

Session Overview
  • Understand the importance of ethics in AI development.
  • Explore key ethical principles and challenges.
  • Analyze real-world case studies and current trends in AI.
  • Discuss best practices for responsible AI development.

Slide 2 - Diapositive

Cet élément n'a pas d'instructions

Introduction
Definition of AI Ethics: Principles guiding the moral and responsible design, development, and deployment of AI.
  • Why ethics matter: Trust in technology, societal impact, and avoiding harm.
  • Intersection: Examples like autonomous vehicles requiring moral decision-making.
  • Practitioner roles: Advocacy for fairness, accountability, and ensuring societal benefit.

Slide 3 - Diapositive

Cet élément n'a pas d'instructions

Core Ethics
Core Ethical Principles in AI:
Transparency:
  • Ensuring AI systems are explainable and understandable.
  • Clear user instructions, purpose, and limitations.
Fairness:
  • Avoiding harm by actively identifying biases in data and algorithms.
  • Regular fairness audits.
Accountability:
  • Example frameworks for responsibility, e.g., role-specific checklists.


Slide 4 - Diapositive

Cet élément n'a pas d'instructions

Key Ethical Challenges
Data Privacy and Security:
  • Modern threats, like data breaches in AI-based healthcare systems.
  • Regulatory trends like CCPA (California Consumer Privacy Act) alongside GDPR.

Bias and Discrimination:
  • Real-life cases, e.g., Amazon’s AI hiring tool discriminating against women.
  • Proactive solutions: Diverse training datasets, adversarial testing.

Slide 5 - Diapositive

Cet élément n'a pas d'instructions

Ethical Considerations
Ethical Considerations in AI Applications
  • Healthcare: Ethical AI in diagnostics and access equality.
  • Employment: How automation in hiring affects minorities.
  • Law Enforcement: Ethical dilemmas in predictive systems.



Slide 6 - Diapositive

Cet élément n'a pas d'instructions

Current Trends in AI (2024)
Large Language Models:
  • ChatGPT updates and industry usage.
  • Limitations like hallucinations and content moderation issues.
Autonomous Systems:
  • Ethics in autonomous drone usage and transport.

Slide 7 - Diapositive

Cet élément n'a pas d'instructions

Responsible AI Development
  • Best practices include adopting interdisciplinary ethical teams.
  • Industry frameworks such as Google's AI Principles.

Slide 8 - Diapositive

Cet élément n'a pas d'instructions

Case Studies
  • Facial Recognition Controversies: Misuse in public surveillance.
  • AI Hiring Tool Bias: Root causes and resolution.
  • Social Media Algorithms: Ethics in content recommendation.
Discussion Points:
What could alternative approaches have been?
How does public participation shape ethical AI?

Slide 9 - Diapositive

Cet élément n'a pas d'instructions

Future Considerations
  • Emerging challenges in AI-human partnerships (e.g., caretaking robots).
  • AI system rights debate and global governance proposals.

Slide 10 - Diapositive

Cet élément n'a pas d'instructions

Discussion Topics
  • Analyze a current AI application (healthcare, finance, etc.) for ethical implications.
  • Debate the ethical challenges of AI autonomy.
  • Discuss the balance between innovation and regulation in AI development.
  • Research the role of culture in defining "ethical AI."
  • Evaluate the impact of social media algorithms on public opinion.

Slide 11 - Diapositive

Cet élément n'a pas d'instructions

Conclusion
Key Takeaways:
  • Ethical AI development is critical for societal trust and sustainability.
  • Transparency, fairness, and accountability are the pillars of ethical AI.
  • Current trends and case studies highlight both progress and challenges.
  • Future developments demand proactive, global governance and collaboration.

Slide 12 - Diapositive

Cet élément n'a pas d'instructions

Slide 13 - Diapositive

https://create.kahoot.it/details/b7e7b9f7-1164-4ac9-9415-ffc785456551