Qu'est-ce que LessonUp
Rechercher
Canaux
Connectez-vous
S'inscrire
‹
Revenir à la recherche
wi 4V H4 1C2A
wi 4V H4 1C2A
4.1 C Elimineren door substitutie
4.2A Hogeremachtswortels [Examenstand]
4.1A Elimineren door optellen/aftrekken
4.1B Elimineren door vermenigvuldigen
1 / 30
suivant
Slide 1:
Diapositive
Wiskunde
Middelbare school
vwo
Leerjaar 4
Cette leçon contient
30 diapositives
, avec
diapositives de texte
.
La durée de la leçon est:
60 min
Commencer la leçon
Partager
Imprimer la leçon
Éléments de cette leçon
wi 4V H4 1C2A
4.1 C Elimineren door substitutie
4.2A Hogeremachtswortels [Examenstand]
4.1A Elimineren door optellen/aftrekken
4.1B Elimineren door vermenigvuldigen
Slide 1 - Diapositive
4.1A: Elimineren door optellen / aftrekken
'Slim' oplossen door vergelijkingen op te tellen of af te trekken van elkaar.
vb1 zelf proberen 1
vb2 zelf proberen 2
5
x
+
7
y
=
3
8
5
x
+
3
y
=
2
2
3
x
+
1
1
y
=
−
1
9
−
3
x
+
4
y
=
−
1
1
−
3
x
−
5
y
=
2
1
2
x
+
8
y
=
7
8
1
0
x
+
8
y
=
1
0
2
4
x
−
5
y
=
−
1
4
(
x
,
y
)
=
(
5
,
−
7
5
1
)
Slide 2 - Diapositive
4.1A: Elimineren door optellen / aftrekken
vb1
5
x
+
7
y
=
3
8
5
x
+
3
y
=
2
2
−
0
x
+
4
y
=
1
6
y
=
4
5
x
+
7
y
=
3
8
5
x
+
7
⋅
4
=
3
8
5
x
+
2
8
=
3
8
5
x
=
1
0
x
=
2
x
=
2
y
=
4
Slide 3 - Diapositive
Elimineren door optellen / aftrekken
zelf proberen 1:
zelf proberen 2:
Je kan oplossingen voor stelsels ook als volgt noteren:
of
(
x
,
y
)
=
(
3
,
9
)
(
x
,
y
)
=
(
5
,
−
7
5
1
)
x
=
3
y
=
9
x
=
3
∧
y
=
9
Slide 4 - Diapositive
4.1B: Elimineren door vermenigvuldigen
Je kunt ook elimineren door de vergelijkingen te vermenigvuldigen met gekozen getallen
Zo stel je één van de variabelen gelijk en los je daarna op.
Kijk hierbij wat handig is. Moet je optellen/ aftrekken?
vb1 zelf proberen 1
vb2
2
x
+
1
4
y
=
9
x
+
6
y
=
4
3
x
−
3
y
=
1
5
5
x
−
y
=
1
3
−
3
x
+
5
y
=
1
8
8
x
−
2
y
=
2
0
Slide 5 - Diapositive
4.1A: Elimineren door vermenigvuldigen
vb1
5
⋅
+
3
4
x
+
0
y
=
1
3
6
x
=
4
−
3
⋅
4
+
5
y
=
1
8
−
1
2
+
5
y
=
1
8
5
y
=
3
0
−
6
x
+
1
0
y
=
3
6
4
0
x
−
1
0
y
=
1
0
0
2
⋅
−
3
x
+
5
y
=
1
8
−
3
x
+
5
y
=
1
8
8
x
−
2
y
=
2
0
y
=
6
x
=
4
y
=
6
Slide 6 - Diapositive
Theorie C: Elimineren door substitutie
Wanneer optellen/aftrekken omslachtig is, kun je het stelsel altijd oplossen met substitutie.
Maak eerst een variabele vrij (kies slim), en vul in bij de ander om te elimineren.
Nieuw: kwadratische stelsels. Er
kunnen
dan ook
meerdere oplossingen
zijn.
vb1 zelf proberen
x
2
+
3
y
=
6
y
−
x
=
−
4
y
2
+
1
5
=
x
−
1
2
x
−
4
y
=
3
8
Slide 7 - Diapositive
Theorie C: Elimineren door substitutie
Wanneer optellen/aftrekken omslachtig is, kun je het stelsel altijd oplossen met substitutie.
Maak eerst een variabele vrij (kies slim), en vul in bij de ander om te elimineren.
Nieuw: kwadratische stelsels. Er
kunnen
dan ook
meerdere oplossingen
zijn.
vb1 zelf proberen
vb2
x
2
+
3
y
=
6
y
−
x
=
−
4
y
−
x
2
=
7
−
5
x
4
y
−
8
x
=
−
2
1
y
2
+
1
5
=
x
−
1
2
x
−
4
y
=
3
8
Slide 8 - Diapositive
Theorie C: Elimineren door substitutie
vb1
x
2
+
3
y
=
6
y
−
x
=
−
4
−
x
=
−
y
−
4
x
2
+
3
y
=
6
Slide 9 - Diapositive
Theorie C: Elimineren door substitutie
vb1
x
2
+
3
y
=
6
y
−
x
=
−
4
−
x
=
−
y
−
4
x
2
+
3
y
=
6
x
=
y
+
4
x
2
+
3
y
=
6
Slide 10 - Diapositive
Theorie C: Elimineren door substitutie
vb1
x
2
+
3
y
=
6
y
−
x
=
−
4
−
x
=
−
y
−
4
x
2
+
3
y
=
6
x
=
y
+
4
x
2
+
3
y
=
6
(
y
+
4
)
2
+
3
y
=
6
y
2
+
8
y
+
1
6
+
3
y
=
6
y
2
+
1
1
y
+
1
0
=
0
(
y
+
1
0
)
(
y
+
1
)
=
0
y
+
1
0
=
0
∧
y
+
1
=
0
y
=
−
1
0
∧
y
=
−
1
Slide 11 - Diapositive
Theorie C: Elimineren door substitutie
vb1
x
2
+
3
y
=
6
y
−
x
=
−
4
−
x
=
−
y
−
4
x
2
+
3
y
=
6
x
=
y
+
4
x
2
+
3
y
=
6
(
y
+
4
)
2
+
3
y
=
6
y
2
+
8
y
+
1
6
+
3
y
=
6
y
2
+
1
1
y
+
1
0
=
0
(
y
+
1
0
)
(
y
+
1
)
=
0
y
+
1
0
=
0
∧
y
+
1
=
0
y
=
−
1
0
∧
y
=
−
1
x
=
y
+
4
x
=
−
6
∧
x
=
3
(
x
,
y
)
=
(
−
6
,
−
1
0
)
∨
(
x
,
y
)
=
(
3
,
−
1
)
Slide 12 - Diapositive
Theorie C: Elimineren door substitutie
Wanneer optellen/aftrekken omslachtig is, kun je het stelsel altijd oplossen met substitutie.
Maak eerst een variabele vrij (kies slim), en vul in bij de ander om te elimineren.
Nieuw: kwadratische stelsels. Er
kunnen
dan ook
meerdere oplossingen
zijn.
vb1 zelf proberen
x
2
+
3
y
=
6
y
−
x
=
−
4
y
2
+
1
5
=
x
−
1
2
x
−
4
y
=
3
8
Slide 13 - Diapositive
Theorie C: Elimineren door substitutie
Wanneer optellen/aftrekken omslachtig is, kun je het stelsel altijd oplossen met substitutie.
Maak eerst een variabele vrij (kies slim), en vul in bij de ander om te elimineren.
Nieuw: kwadratische stelsels. Er
kunnen
dan ook
meerdere oplossingen
zijn.
vb1 zelf proberen
vb2
x
2
+
3
y
=
6
y
−
x
=
−
4
y
−
x
2
=
7
−
5
x
4
y
−
8
x
=
−
2
1
y
2
+
1
5
=
x
−
1
2
x
−
4
y
=
3
8
Slide 14 - Diapositive
Theorie C: Elimineren door substitutie
vb2
2
x
+
5
4
1
−
x
2
=
7
−
5
x
−
x
2
−
3
x
−
1
4
3
=
0
y
=
−
1
0
∧
y
=
−
1
x
=
y
+
4
x
=
−
6
∧
x
=
3
(
−
6
,
−
1
0
)
∨
(
3
,
−
1
)
y
−
x
2
=
7
−
5
x
4
y
−
8
x
=
−
2
1
−
4
y
=
−
2
1
−
8
x
y
=
2
x
+
5
4
1
y
−
x
2
=
7
−
5
x
x
2
+
3
x
+
1
4
3
=
0
Slide 15 - Diapositive
Theorie C: Elimineren door substitutie
zelf proberen
y
2
+
1
5
=
x
−
1
2
x
−
4
y
=
3
8
(
x
,
y
)
=
(
1
7
,
−
1
)
∨
(
x
,
y
)
=
(
2
5
,
3
)
Slide 16 - Diapositive
Theorie A: oplossingen van hogeregraadsvergelijkingen
(herhaling)
x
2
=
5
x
=
√
5
x
=
−
√
5
⋁
Slide 17 - Diapositive
Theorie A: oplossingen van hogeregraadsvergelijkingen
Waarom voldoet de negatieve oplossing niet?
x
3
=
5
x
=
3
√
5
⋁
x
=
−
3
√
5
Slide 18 - Diapositive
Theorie A: oplossingen van hogeregraadsvergelijkingen
Nog twee voorbeelden
x
4
=
5
x
5
=
5
Slide 19 - Diapositive
Theorie A: oplossingen van hogeregraadsvergelijkingen
Nog twee voorbeelden
x
4
=
5
x
5
=
5
Slide 20 - Diapositive
Theorie A: oplossingen van hogeregraadsvergelijkingen
We kunnen zeggen dat een
even
macht twee oplossingen heeft.
En een
oneven
macht heeft één oplossing.
Slide 21 - Diapositive
Theorie A: oplossingen van hogeregraadsvergelijkingen
Let op! Een
even
macht heeft soms twee oplossingen.
Er zijn situaties waarin een
even
macht één of géén oplossingen heeft.
Zie bijvoorbeeld weer
Voor welke waarden van
y
heeft deze
vergelijking géén oplossingen?
y
=
x
4
Slide 22 - Diapositive
Theorie A: oplossingen van hogeregraadsvergelijkingen
Voor welke waarden van
y
heeft deze
vergelijking géén oplossingen?
voor
Dit komt doordat de uitkomst
van een wortel
altijd
positief
moet zijn.
y
=
x
4
y
<
0
Slide 23 - Diapositive
Theorie A: oplossingen van hogeregraadsvergelijkingen
Voorbeeld: geef de oplossing(en) voor
x
4
=
8
1
Slide 24 - Diapositive
Hogeregraadsvergelijkingen oplossen
Slide 25 - Diapositive
4.2A Hogeremachtswortels
x
n
=
p
n
x
n
=
p
met
n
=
2
,
3
,
4
,
.
.
.
oneven
geeft
x
=
n
√
p
n
n
even
even
x
n
=
p
x
n
=
p
geeft
geeft geen oplossingen
x
=
n
√
p
x
=
−
n
√
p
∨
p
>
0
p
<
0
x
3
=
−
2
7
⇒
3
√
−
2
7
x
4
=
1
9
6
⇒
4
√
1
9
6
∨
−
4
√
1
9
6
x
4
=
−
1
9
6
⇒
k
.
n
.
Slide 26 - Diapositive
4.2A Hogeremachtswortels - 27a, b
x
=
3
√
−
2
1
6
=
−
6
x
=
4
√
1
9
6
∨
x
=
−
4
√
1
9
6
4
1
x
3
+
6
0
=
6
4
1
x
3
=
−
5
4
x
3
=
−
2
1
6
1
0
0
−
3
x
4
=
5
5
−
3
x
4
=
−
4
5
x
4
=
1
5
Slide 27 - Diapositive
4.2A Hogeremachtswortels - 27a, b
x
=
3
√
−
2
1
6
=
−
6
x
=
4
√
1
9
6
∨
x
=
−
4
√
1
9
6
4
1
x
3
+
6
0
=
6
4
1
x
3
=
−
5
4
x
3
=
−
2
1
6
1
0
0
−
3
x
4
=
5
5
−
3
x
4
=
−
4
5
x
4
=
1
5
Slide 28 - Diapositive
4.2A Hogeremachtswortels - 27c, d
1
−
2
x
=
6
√
8
∨
1
−
2
x
=
−
6
√
8
2
1
(
4
x
−
1
)
5
+
3
=
1
9
2
2
1
(
1
−
2
x
)
6
−
6
=
1
4
2
1
(
4
x
−
1
)
5
=
1
6
(
4
x
−
1
)
5
=
3
2
4
x
−
1
=
5
√
3
2
=
2
2
2
1
(
1
−
2
x
)
6
=
2
0
(
1
−
2
x
)
6
=
8
4
x
=
3
x
=
4
3
−
2
x
=
−
1
+
6
√
8
∨
−
2
x
=
−
1
−
6
√
8
x
=
2
1
−
2
1
6
√
8
∨
x
=
2
1
+
2
1
6
√
8
Slide 29 - Diapositive
4.2A Hogeremachtswortels - 27c, d
1
−
2
x
=
6
√
8
∨
1
−
2
x
=
−
6
√
8
2
1
(
4
x
−
1
)
5
+
3
=
1
9
2
2
1
(
1
−
2
x
)
6
−
6
=
1
4
2
1
(
4
x
−
1
)
5
=
1
6
(
4
x
−
1
)
5
=
3
2
4
x
−
1
=
5
√
3
2
=
2
2
2
1
(
1
−
2
x
)
6
=
2
0
(
1
−
2
x
)
6
=
8
4
x
=
3
x
=
4
3
−
2
x
=
−
1
+
6
√
8
∨
−
2
x
=
−
1
−
6
√
8
x
=
2
1
−
2
1
6
√
8
∨
x
=
2
1
+
2
1
6
√
8
Slide 30 - Diapositive
Plus de leçons comme celle-ci
wi 4V H4 1AB
Décembre 2024
- Leçon avec
50 diapositives
Wiskunde
Middelbare school
vwo
Leerjaar 4
vergelijkingen en herleidingen les 4
Juillet 2024
- Leçon avec
31 diapositives
Wiskunde
Middelbare school
vwo
Leerjaar 4
Les 1 - Voorkennis en 4.1
Janvier 2024
- Leçon avec
14 diapositives
Wiskunde
Middelbare school
vwo
Leerjaar 4
vergelijkingen en herleidingen les 3
Juillet 2024
- Leçon avec
28 diapositives
Wiskunde
Middelbare school
vwo
Leerjaar 4
4v 3.2. stelsels vergelijkingen, elimineren
Octobre 2020
- Leçon avec
11 diapositives
Wiskunde
Middelbare school
vwo
Leerjaar 4
Les 8 H1.6 Stelsel vergelijkingen
Septembre 2024
- Leçon avec
15 diapositives
Wiskunde
Middelbare school
vwo
Leerjaar 3
V3 H1.6 Stelsel vergelijkingen
Septembre 2023
- Leçon avec
20 diapositives
Wiskunde
Middelbare school
vwo
Leerjaar 3
4v 3.2. stelsels lijnen en parabolen
Octobre 2020
- Leçon avec
10 diapositives
Wiskunde
Middelbare school
vwo
Leerjaar 4