Qu'est-ce que LessonUp
Rechercher
Canaux
Connectez-vous
S'inscrire
‹
Revenir à la recherche
Voorkennis KNM
Een formule waarvan de grafiek een rechte lijn is, noemen we een
lineaire formule
.
y= -3x + 4
Het
hellingsgetal
is -3
(het getal voor de variabele)
Het
startgetal
is 4
(snijpunt met de verticale as)
y = 4x - 0,5
b = a + 8
y = -6x
1 / 15
suivant
Slide 1:
Diapositive
Wiskunde
Middelbare school
havo
Leerjaar 2
Cette leçon contient
15 diapositives
, avec
quiz interactifs
et
diapositives de texte
.
La durée de la leçon est:
50 min
Commencer la leçon
Partager
Imprimer la leçon
Éléments de cette leçon
Een formule waarvan de grafiek een rechte lijn is, noemen we een
lineaire formule
.
y= -3x + 4
Het
hellingsgetal
is -3
(het getal voor de variabele)
Het
startgetal
is 4
(snijpunt met de verticale as)
y = 4x - 0,5
b = a + 8
y = -6x
Slide 1 - Diapositive
Aflezen uit een tabel:
Startgetal
vind je onder de x=0.
Hellingsgetal
is de vaste toename bij een stap van 1.
(2,4) en (0,5)
y-coördinaat: 4-5 = -1 -1 : 2 = (hellingsgetal)
x-coördinaat: 2 - 0 = 2
x
0
2
4
6
y
5
4
3
2
−
2
1
Slide 2 - Diapositive
Haakjes wegwerken:
Hoe zat dat ook al weer?
y = -(6p +3)
y = (2x + 1)(x - 5)
Slide 3 - Diapositive
Schrijf de formules zonder haakjes
y = 6x
2
-8x
y = 6x
2
-15x
y = -6x -3
y = -6x +3
y= 3x(2x -5)
y= -2x(-3x + 4)
y = -(6x + 3)
Slide 4 - Question de remorquage
Schrijf de formules zonder haakjes en zo kort mogelijk.
y = -8x
2
-14x +15
y = -8x
2
-20x +6x +15
y = -8x
2
+26x -15
y = -8x
2
+20x + 6x -15
y= (4x -3)(-2x +5)
y = (3 -4x)(2x +5)
Slide 5 - Question de remorquage
https:
Slide 6 - Lien
Aan het werk:
Maak opdracht V1 t/m V3 voorkennis H9 (iedereen)
timer
10:00
Slide 7 - Diapositive
Huiswerk woensdag 12 mei:
Maak de opdrachten van deze lesson-up
Maak opdracht V1 t/m V3 voorkennis H9
Slide 8 - Diapositive
Wat is het startgetal en het hellingsgetal bij deze formule?
y = -2x +7
A
Startgetal -2 en hellingsgetal 7
B
Startgetal 7 en hellingsgetal -2x
C
Startgetal 7 en hellingsgetal -2
D
Startgetal y en hellingsgetal -2
Slide 9 - Quiz
Wat is het startgetal en het hellingsgetal bij deze formule?
b =-4a
A
Startgetal is er niet en hellingsgetal -4
B
Startgetal 0 en hellingsgetal -4
Slide 10 - Quiz
Wat is het
startgetal?
x
-2
0
2
y
8
12
16
A
-2
B
8
C
0
D
12
Slide 11 - Quiz
Wat is het
hellingsgetal?
x
-2
0
2
y
8
12
16
A
8
B
2
C
0
D
4
Slide 12 - Quiz
Stel de formule
op bij deze tabel
x
-2
0
2
y
8
12
16
Slide 13 - Question ouverte
Schrijf de formule zo kort mogelijk
(haakjes wegwerken)
y = 5p (3p -2)
Slide 14 - Question ouverte
Schrijf de formule zo kort mogelijk
(haakjes wegwerken)
y = (-2x +4)(5x -3)
Slide 15 - Question ouverte
Plus de leçons comme celle-ci
2e klas voorkennis H9
March 2021
- Leçon avec
22 diapositives
Wiskunde
Middelbare school
havo
Leerjaar 2
Voorkennis H9, 2hv
May 2022
- Leçon avec
21 diapositives
Wiskunde
Middelbare school
havo
Leerjaar 2
WI 2HV P5 H9.2 - Vergelijkingen oplossen
May 2021
- Leçon avec
32 diapositives
Wiskunde
Middelbare school
vmbo t, havo
Leerjaar 2
9.4 Grafieken schetsen
February 2023
- Leçon avec
15 diapositives
Wiskunde
Middelbare school
havo
Leerjaar 2
H9.3 Snijdende lijnen
May 2024
- Leçon avec
32 diapositives
Wiskunde
Middelbare school
vmbo t, havo
Leerjaar 2
Les 25 06-12 2mh
November 2024
- Leçon avec
11 diapositives
Wiskunde
Middelbare school
vmbo lwoo, mavo, havo
Leerjaar 2
H9.2 Vergelijkingen oplossen
April 2024
- Leçon avec
33 diapositives
Wiskunde
Middelbare school
vmbo t, havo
Leerjaar 2
H11 Ontbinden in factoren
June 2024
- Leçon avec
29 diapositives
Wiskunde
Middelbare school
havo, vwo
Leerjaar 2