Qu'est-ce que LessonUp
Rechercher
Canaux
Connectez-vous
S'inscrire
‹
Revenir à la recherche
12.4 A Lengten, hoeken en snelheden
12.4 A Lengten, hoeken en snelheden
1 / 18
suivant
Slide 1:
Diapositive
wiskunde
Middelbare school
vwo
Leerjaar 5
Cette leçon contient
18 diapositives
, avec
diapositives de texte
.
La durée de la leçon est:
45 min
Commencer la leçon
Partager
Imprimer la leçon
Éléments de cette leçon
12.4 A Lengten, hoeken en snelheden
Slide 1 - Diapositive
Uit 10.6
Plaatsvector:
Snelheidsvector:
Baansnelheid:
(
y
(
t
)
=
sin
(
2
t
)
x
(
t
)
=
sin
(
t
)
)
(
y
′
(
t
)
=
2
c
o
s
(
2
t
)
x
′
(
t
)
=
cos
(
t
)
)
√
cos
2
(
t
)
+
4
c
o
s
2
(
2
t
)
Slide 2 - Diapositive
Berekeningen bij banen
met
Bereken de coördinaten van de
snijpunten van de baan van P met de lijn
x
(
t
)
=
sin
(
4
t
)
y
(
t
)
=
sin
(
t
)
0
≤
t
≤
2
π
y
=
2
1
Slide 3 - Diapositive
y
(
t
)
=
sin
(
t
)
=
2
1
sin
(
t
)
=
2
1
Slide 4 - Diapositive
y
(
t
)
=
sin
(
t
)
=
2
1
sin
(
t
)
=
2
1
t
=
6
1
π
+
k
⋅
2
π
∨
t
=
6
5
π
+
k
⋅
2
π
Slide 5 - Diapositive
y
(
t
)
=
sin
(
t
)
=
2
1
sin
(
t
)
=
2
1
t
=
6
1
π
+
k
⋅
2
π
∨
t
=
6
5
π
+
k
⋅
2
π
0
≤
t
≤
2
π
Slide 6 - Diapositive
Dus
y
(
t
)
=
sin
(
t
)
=
2
1
sin
(
t
)
=
2
1
t
=
6
1
π
+
k
⋅
2
π
∨
t
=
6
5
π
+
k
⋅
2
π
0
≤
t
≤
2
π
t
=
6
1
π
∨
t
=
6
5
π
Slide 7 - Diapositive
Berekeningen bij banen
met
Bereken de coördinaten van de
snijpunten van de baan van P met de lijn
x
(
t
)
=
sin
(
4
t
)
y
(
t
)
=
sin
(
t
)
0
≤
t
≤
2
π
y
=
2
1
Slide 8 - Diapositive
Berekeningen bij banen
x
(
t
)
=
sin
(
4
t
)
y
(
t
)
=
sin
(
t
)
t
=
6
1
π
∨
t
=
6
5
π
Slide 9 - Diapositive
Berekeningen bij banen
x
(
t
)
=
sin
(
4
t
)
y
(
t
)
=
sin
(
t
)
t
=
6
1
π
∨
t
=
6
5
π
A
(
−
2
1
√
3
,
2
1
)
B
(
2
1
√
3
,
2
1
)
Slide 10 - Diapositive
Berekeningen bij banen
Onder welke hoek snijdt de baan
van P de lijn in A?
x
(
t
)
=
sin
(
4
t
)
y
(
t
)
=
sin
(
t
)
A
(
−
2
1
√
3
,
2
1
)
y
=
2
1
Slide 11 - Diapositive
Berekeningen bij banen
Onder welke hoek snijdt de baan
van P de lijn in A?
x
(
t
)
=
sin
(
4
t
)
y
(
t
)
=
sin
(
t
)
A
(
−
2
1
√
3
,
2
1
)
y
=
2
1
x
′
(
t
)
=
4
c
o
s
(
4
t
)
y
′
(
t
)
=
cos
(
t
)
Slide 12 - Diapositive
Berekeningen bij banen
x
′
(
t
)
=
4
c
o
s
(
4
t
)
y
′
(
t
)
=
cos
(
t
)
t
=
6
5
π
v
k
⃗
=
(
y
′
(
6
5
π
)
x
′
(
6
5
π
)
)
=
(
cos
(
6
5
π
)
4
cos
(
3
3
1
π
)
)
=
(
−
2
1
√
3
4
⋅
−
2
1
)
=
(
−
2
1
√
3
−
2
)
Slide 13 - Diapositive
Berekeningen bij banen
x
′
(
t
)
=
4
c
o
s
(
4
t
)
y
′
(
t
)
=
cos
(
t
)
t
=
6
5
π
v
k
⃗
=
(
y
′
(
6
5
π
)
x
′
(
6
5
π
)
)
=
(
cos
(
6
5
π
)
4
cos
(
3
3
1
π
)
)
=
(
−
2
1
√
3
4
⋅
−
2
1
)
=
(
−
2
1
√
3
−
2
)
r
c
k
=
−
2
−
2
1
√
3
Slide 14 - Diapositive
Berekeningen bij banen
x
′
(
t
)
=
4
c
o
s
(
4
t
)
y
′
(
t
)
=
cos
(
t
)
t
=
6
5
π
r
c
k
=
−
2
−
2
1
√
3
∠
α
=
tan
−
1
(
4
1
√
3
)
≈
2
3
,
4
°
Slide 15 - Diapositive
Berekeningen bij banen
Met welke snelheid gaat het punt P
door de lijn in A?
x
(
t
)
=
sin
(
4
t
)
y
(
t
)
=
sin
(
t
)
A
(
−
2
1
√
3
,
2
1
)
y
=
2
1
x
′
(
t
)
=
4
c
o
s
(
4
t
)
y
′
(
t
)
=
cos
(
t
)
Slide 16 - Diapositive
Berekeningen bij banen
Met welke snelheid gaat het punt P
door de lijn in A?
y
=
2
1
t
=
6
5
π
(
y
′
(
6
5
π
)
x
′
(
6
5
π
)
)
=
(
cos
(
6
5
π
)
4
cos
(
3
3
1
π
)
)
=
(
−
2
1
√
3
4
⋅
−
2
1
)
=
(
−
2
1
√
3
−
2
)
Slide 17 - Diapositive
Berekeningen bij banen
Met welke snelheid gaat het punt P
door de lijn in A?
y
=
2
1
t
=
6
5
π
(
y
′
(
6
5
π
)
x
′
(
6
5
π
)
)
=
(
cos
(
6
5
π
)
4
cos
(
3
3
1
π
)
)
=
(
−
2
1
√
3
4
⋅
−
2
1
)
=
(
−
2
1
√
3
−
2
)
∣
v
k
⃗
∣
=
√
(
−
2
)
2
+
(
−
2
1
√
3
)
2
=
2
1
√
1
9
Slide 18 - Diapositive
Plus de leçons comme celle-ci
Toets analyzeren_1.1 De formule y=ax+b&1.3 Lineaire vergelijkingen
Novembre 2024
- Leçon avec
25 diapositives
Wiskunde
Middelbare school
havo
Leerjaar 3
1.4 Snijpunten van grafieken
il y a 25 jours
- Leçon avec
18 diapositives
Wiskunde
Middelbare school
havo
Leerjaar 3
1.3 Lineaire vergelijkingen metbre3uken & 1.4 Snijpunten van grafieken
il y a 25 jours
- Leçon avec
25 diapositives
Wiskunde
Middelbare school
havo
Leerjaar 3
Herhaling1.1 De formule y=ax+b&1.3 Lineaire vergelijkingen
Novembre 2024
- Leçon avec
39 diapositives
Wiskunde
Middelbare school
havo
Leerjaar 3
Wiskunde B presentatie
Juin 2021
- Leçon avec
35 diapositives
Wiskunde
Middelbare school
vwo
Leerjaar 5
Voorkennis H3
Septembre 2022
- Leçon avec
17 diapositives
Wiskunde
Middelbare school
havo
Leerjaar 2
Opstellen raaklijn
Avril 2021
- Leçon avec
23 diapositives
Wiskunde
Middelbare school
vwo
Leerjaar 5
Herhaling1.1 De formule y=ax+b&1.3 Lineaire vergelijkingen
Novembre 2024
- Leçon avec
45 diapositives
Wiskunde
Middelbare school
havo
Leerjaar 3