Qu'est-ce que LessonUp
Rechercher
Canaux
Connectez-vous
S'inscrire
‹
Revenir à la recherche
6.2 kwadratische formules
kwadratische formules
1 / 50
suivant
Slide 1:
Diapositive
Wiskunde
Middelbare school
havo, vwo
Leerjaar 1
Cette leçon contient
50 diapositives
, avec
quiz interactifs
et
diapositives de texte
.
La durée de la leçon est:
30 min
Commencer la leçon
Partager
Imprimer la leçon
Éléments de cette leçon
kwadratische formules
Slide 1 - Diapositive
Deze les:
Leerdoel:
Je kunt rekenen met kwadratische formules.
Deze les:
- Herhaling kwadraten en wortels
- Formules met kwadraten + oefenen
Slide 2 - Diapositive
1
4
2
=
Slide 3 - Question ouverte
√
3
6
=
Slide 4 - Question ouverte
Slide 5 - Diapositive
Wat is de formule?
a
=
n
2
Slide 6 - Question ouverte
Aantal stippen = nummer van het figuur in het kwadraat
a
=
n
2
Slide 7 - Diapositive
Slide 8 - Diapositive
Slide 9 - Question ouverte
Hoe veel stippen heeft nummer 10?
En nummer 20?
nr.
1
2
3
4
10
20
aant.
4
7
12
Slide 10 - Diapositive
Hoe veel stippen heeft nummer 10?
En nummer 20?
nr.
1
2
3
4
10
20
aant.
4
7
12
a
=
n
2
+
3
Slide 11 - Diapositive
Gegeven is de formule:
Hoeveel stippen zijn er bij nummer 8?
a
=
n
2
+
3
Slide 12 - Question ouverte
Gegeven is de formule:
Hoeveel stippen zijn er bij nummer 7?
a
=
n
2
+
2
Slide 13 - Question ouverte
a
=
n
2
+
3
Slide 14 - Diapositive
Ik kan de formule invullen en het aantal stippen berekenen
😒
🙁
😐
🙂
😃
Slide 15 - Sondage
Formules met x en y
Slide 16 - Diapositive
Formules met x en y
Dit zijn allemaal voorbeelden van
kwadratische
formules.
y
=
x
2
−
8
y
=
(
x
+
1
)
2
+
3
y
=
8
x
2
+
4
Slide 17 - Diapositive
Formules met x en y
x = 5 geeft:
y
=
x
2
−
8
y
=
(
x
+
1
)
2
+
3
y
=
5
2
−
8
y
=
2
5
−
8
=
1
7
y
=
(
5
+
1
)
2
+
3
y
=
6
2
+
3
y
=
3
6
+
3
=
3
9
Slide 18 - Diapositive
Bereken y voor x = 3
y
=
x
2
+
4
Slide 19 - Question ouverte
Bereken y voor x = 5
y
=
(
x
−
1
)
2
+
5
Slide 20 - Question ouverte
Let op:
Het kwadraat van -5 is (-5)
2,
dus haakjes zetten
Slide 21 - Diapositive
Bereken y voor x = - 9
y
=
(
x
+
5
)
2
Slide 22 - Question ouverte
Ik kan y berekenen voor een gegeven x
😒
🙁
😐
🙂
😃
Slide 23 - Sondage
6.3 kwadratische formules
Slide 24 - Diapositive
Slide 25 - Diapositive
Slide 26 - Diapositive
Slide 27 - Diapositive
Slide 28 - Diapositive
Wat moet er op de plek van het vraagteken staan?
Slide 29 - Question ouverte
Slide 30 - Diapositive
Wat moet er op de plek van het vraagteken staan?
Slide 31 - Question ouverte
Slide 32 - Diapositive
Wat moet er op de plek van het vraagteken staan?
Slide 33 - Question ouverte
Slide 34 - Diapositive
Slide 35 - Diapositive
Slide 36 - Diapositive
Slide 37 - Diapositive
Slide 38 - Diapositive
Slide 39 - Diapositive
y
=
x
2
−
2
Slide 40 - Diapositive
Slide 41 - Diapositive
Stappenplan parabool tekenen:
1. maak een tabel
2. maak een assenstelsel
3. zet de punten van je tabel in het assenstelsel
4. teken de grafiek (een vloeiende lijn)
Slide 42 - Diapositive
Ik snap hoe ik een parabool moet tekenen
😒
🙁
😐
🙂
😃
Slide 43 - Sondage
VOORBEELDSOM met parabool
Slide 44 - Diapositive
y
=
−
0
,
5
⋅
0
2
+
4
,
5
y
=
−
0
,
5
⋅
0
+
4
,
5
y
=
0
+
4
,
5
=
4
,
5
Hoe hoog is het viaduct?
Dus het viaduct is 4,5 meter hoog
Slide 45 - Diapositive
y
=
−
0
,
5
⋅
0
2
+
4
,
5
y
=
−
0
,
5
⋅
0
+
4
,
5
y
=
0
+
4
,
5
=
4
,
5
Hoe hoog is het viaduct?
Dus het viaduct is 4,5 meter hoog
Slide 46 - Diapositive
y
=
−
0
,
5
⋅
0
2
+
4
,
5
y
=
−
0
,
5
⋅
0
+
4
,
5
y
=
0
+
4
,
5
=
4
,
5
Hoe hoog is het viaduct?
Dus het viaduct is 4,5 meter hoog
Slide 47 - Diapositive
y
=
−
0
,
5
⋅
0
2
+
4
,
5
y
=
−
0
,
5
⋅
0
+
4
,
5
y
=
0
+
4
,
5
=
4
,
5
Hoe hoog is het viaduct?
Dus het viaduct is 4,5 meter hoog
Slide 48 - Diapositive
y
=
−
0
,
5
⋅
0
2
+
4
,
5
y
=
−
0
,
5
⋅
0
+
4
,
5
y
=
0
+
4
,
5
=
4
,
5
Hoe hoog is het viaduct?
Dus het viaduct is 4,5 meter hoog
Slide 49 - Diapositive
y
=
−
0
,
5
⋅
(
x
)
2
+
4
,
5
Hoe breed is het viaduct?
Dus het viaduct is ............meter breed
Slide 50 - Diapositive
Plus de leçons comme celle-ci
H6.3A
Février 2023
- Leçon avec
31 diapositives
Wiskunde
Middelbare school
havo
Leerjaar 1
6.2 kwadratische formules
Mai 2024
- Leçon avec
22 diapositives
Wiskunde
Middelbare school
havo, vwo
Leerjaar 1
H7.2 Kwadratische formules + H7.3 Parabolen
Mai 2021
- Leçon avec
43 diapositives
Wiskunde
Middelbare school
mavo
Leerjaar 1
6.2 kwadratische formules
Février 2024
- Leçon avec
27 diapositives
Wiskunde
Middelbare school
havo, vwo
Leerjaar 1
6.2 B Kwadratische formules met x en y
Janvier 2025
- Leçon avec
21 diapositives
Wiskunde
Middelbare school
mavo, havo
Leerjaar 1
6.2 E Kwadratische formules
Mars 2023
- Leçon avec
14 diapositives
Wiskunde
Middelbare school
mavo, havo
Leerjaar 1
Kwadratische verbanden
Avril 2018
- Leçon avec
18 diapositives
Wiskunde
Middelbare school
vmbo g, t, mavo
Leerjaar 1
6.2 B Kwadratische formules met x en y
Mars 2023
- Leçon avec
17 diapositives
Wiskunde
Middelbare school
mavo, havo
Leerjaar 1