Week 39: H4.1+4.2

Grafieken en vergelijkingen
Stijgen en dalen...

(Bicoinspot.nl)
1 / 41
suivant
Slide 1: Diapositive
WiskundeMiddelbare schoolvmbo tLeerjaar 4

Cette leçon contient 41 diapositives, avec quiz interactifs, diapositives de texte et 6 vidéos.

Éléments de cette leçon

Grafieken en vergelijkingen
Stijgen en dalen...

(Bicoinspot.nl)

Slide 1 - Diapositive

Ik weet wat een evenredig en omgekeerd evenredig verband is en wat het verschil is.
Ik weet dat bij een omgekeerd evenredig verband een hyperbool hoort
Ik weet dat bij een evenredig verband de lijn door de oorsprong gaat en een rechte lijn is


Week 39 lesdoel:
(Bicoinspot.nl)

Slide 2 - Diapositive

De grafieken






         evenredig verband                    omgekeerd evenredig verband

Slide 3 - Diapositive

H4.1 - Omgekeerd evenredig verband.

 Wordt de variabele boven 2 keer zo groot, dan wordt de variabele onder 2 keer zo klein. 

Formule= Getal : variabele
In dit geval:
H= 60 : t
Altijd  hyperbool grafiek!

Slide 4 - Diapositive

Slide 5 - Diapositive

Evenredig verband.
 
Wordt de variabele boven 2 keer zo groot, dan wordt hij onder ook 2 keer zo groot. 

Formule = Getal x variabele.
In dit geval: 
H= 30t
Altijd lineaire grafiek door de oorsprong (0,0)!

Slide 6 - Diapositive

H4 Grafieken en vergelijkingen blz 174

Les 1: maken voorkennis: 2, 3, 5, 6
Les 2+3: H4.1 opg: 2,3,4,7,8, 11,13, 14 + H4.2 opg: 16, 18,20, 22
+ alles online nakijken
Les 4+5: H4.2 opg: 25, 28, 29, 30, 31, 34, 37, 38, 39












Weektaak week 39 

Slide 7 - Diapositive

Slide 8 - Diapositive

Slide 9 - Vidéo

Slide 10 - Vidéo

H4.2 Allerlei verbanden en grafieken. 
Trapjesgrafiek en stippengrafiek.
H 4.2      Allerlei verbanden en grafieken
Deze grafieken moet je kunnen herkennen en de eigenschappen van de verbanden kennen!

Slide 11 - Diapositive

H4.2 Allerlei verbanden en grafieken. 
Trapjesgrafiek en stippengrafiek.
             trapjesgrafiek                     stippengrafiek.

Slide 12 - Diapositive

Voorbeeld trapjesgrafiek
    Voorbeeld trapjesgrafiek

Slide 13 - Diapositive

Slide 14 - Diapositive

Voorbeeld trapjesgrafiek
    Voorbeeld stippengrafiek

Slide 15 - Diapositive

H4 Grafieken en vergelijkingen blz 174

Les 1: maken voorkennis: 2, 3, 5, 6
Les 2+3: H4.1 opg: 2,3,4,7,8, 11,13, 14 + H4.2 opg: 16, 18,20, 22
+ alles online nakijken
Les 4+5: H4.2 opg: 25, 28, 29, 30, 31, 34, 37, 38, 39












Weektaak week 39 

Slide 16 - Diapositive

Slide 17 - Vidéo

Les 4+5 Grafieken en vergelijkingen
Stijgen en dalen...

(Bicoinspot.nl)

Slide 18 - Diapositive

- ik kan uitzoeken welke formules gelijkwaardig zijn.
- ik kan met behulp van de balansmethode en de inklemmethode vergelijkingen oplossen.
lesdoel:
(Bicoinspot.nl)

Slide 19 - Diapositive

H4.3  Gelijkwaardige formules

Slide 20 - Diapositive

gelijkwaardig?

prijs = 15 + 2 x aantal


en


aantal =           prijs - 15

                            ---------------

                           2





Slide 21 - Diapositive

Stappenplan gelijkwaardige formules

  • in 1e formule aantal invullen  => antwoord is prijs


  • in 2e formule prijs invullen -> antwoord = aantal 

  • zijn getallen in  formules dezelfde? -> gelijkwaardig


  • Nog één proberen! -> altijd twee proberen!

Slide 22 - Diapositive

H4 Grafieken en vergelijkingen

Les 1: H4 opgave 1,2,3,6,9,10,
Les 2: H4 opgave 13,14,17,18,19,20
Les 3: H4 opgave 23,24,25,27,28
Les 4: H4 opgave 30,33,35,
Les 5: Kopieerblad vergelijkingen oplossen 




Weektaak

Slide 23 - Diapositive

H4.4 - Vergelijkingen oplossen
Een vergelijking is op 3 manieren op te lossen:


  1. Met de balansmethode
  2. Met een grafiek (als die er is of als je die kunt maken)
  3. Met inklemmen

Slide 24 - Diapositive

Hoe zat het ook alweer? 
1. Balansmethode

Slide 25 - Diapositive

4b + 12           = 36
Zie de vergelijking als een balans (een weegschaal)

Slide 26 - Diapositive

De balansmethode
Welke vergelijking hoort bij deze balans?
Los de vergelijking op. 
Vergelijking
  • 3x + 5 = 10 
Oplossing
  • 3x + 5 = 10 
  • 3x = 5
  •   x = 5/3
  •   x = 1  2/3

Slide 27 - Diapositive

Slide 28 - Vidéo

Oplossen met grafieken

Slide 29 - Diapositive

Wat willen we nu eigenlijk weten?
Welk getal moet ik invullen zodat er bij allebei hetzelfde antwoord uit komt? 

Slide 30 - Diapositive

Vergelijking oplossen  met grafieken
 We zoeken het punt (x,y) waarbij beide grafieken 'gelijk' zijn, dus door het zelfde punt (coördinaat) uitkomen. 

Dit noemen we het snijpunt van 2 grafieken. 

De 'x' vind je door lijn naar x-as te trekken en de 'y' vind je door het invullen van de gevonden 'x' in de formule.
Snijpunt
Hier kan ik zien na hoelang werken ze allebei evenveel verdienen. 

Slide 31 - Diapositive

Type opgaven / vragen

1) Wat betaal ik als ik 30 minuten heb gebeld? En mijn collega? 

2) Wanneer betalen mijn collega en ik evenveel
Ik heb een telefoon abonnement waarbij ik de volgende formule heb om de kosten uit te rekenen: 

          Kosten in €= 1 0 + 0,50t 
          t = de beltijd in minuten

Mijn collega heeft ook een telefoon abonnement en die berekent haar kosten met de volgende formule:

            Kosten in €= 12 + 0,25t
              t = de beltijd in minuten.

Slide 32 - Diapositive

Slide 33 - Vidéo

Inklemmen. 
Oplossen met inklemmen
1.
2.
Soms zijn vergelijkingen op meerder manieren op te lossen. Kijk maar:

Slide 34 - Diapositive

Inklemmen:
Getallen invullen op de plek van de k tot je bij het gewenste antwoord (100) bent.
Balansmethode:
  Los op:  
 -25   25+0,5k = 100   -25
          0,5k = 75
: 0,5.       k = 150.        : 0,5
k=10 --> 25 +(0,5x10)  = 30 (te weinig)
k=50--> 25+(0,5x50)  = 50 (te weinig)
k=100-->25+(0,5x100)= 75 (te weinig)
...
k=150 --> 25+(0,5x150)=100!! 
oplossing:   k = 150

Slide 35 - Diapositive

Inklemmen gebruik je ook vaak bij het zoeken naar          
snijpunten in een grafiek van verschillende soorten verbanden
(bv. kwadratisch en lineair)
Uitwerking

Slide 36 - Diapositive

Slide 37 - Vidéo

Je kan het!
Enkele oefeningen...

Slide 38 - Diapositive

Slide 39 - Diapositive

voorgaande grafiek is een
A
stippengrafiek
B
een evenredig verband
C
een exponentiele formule
D
een trapjesgrafiek

Slide 40 - Quiz

voorgaande grafiek is een
A
stippengrafiek
B
een evenredig verband
C
een exponentiele formule
D
een trapjesgrafiek

Slide 41 - Quiz