3.4 assenstelsels

Goedemiddag
We beginnen de les een beetje anders dan normaal
Daarna krijg je uitleg
Vervolgens ga je aan het werk
Daarna nog wat uitleg 

1 / 25
suivant
Slide 1: Diapositive
WiskundeMiddelbare schoolhavo, vwoLeerjaar 1

Cette leçon contient 25 diapositives, avec quiz interactifs et diapositives de texte.

time-iconLa durée de la leçon est: 45 min

Éléments de cette leçon

Goedemiddag
We beginnen de les een beetje anders dan normaal
Daarna krijg je uitleg
Vervolgens ga je aan het werk
Daarna nog wat uitleg 

Slide 1 - Diapositive

Je krijgt 3 minuten
Bereken: (28-5k): -4 voor k=-6

(snap je dit niet? Maak dan uit je boek opgave 51)
timer
3:00

Slide 2 - Diapositive

1-4 Assenstelsel en coordinaten

Slide 3 - Diapositive

Slide 4 - Carte

Coördinaten
Speciale coördinaten zijn coördinaten die decimale getallen hebben. Bijvoorbeeld het getal anderhalf (1,5). Als je naar het punt 
(1,5, 1,5) wilt gaan  kunnen al die komma's verwarend zijn. Daarom wordt bij decimale getalen een puntkomma achter het getal gebruikt. (1,5;1,5) is de juiste notatie

Wat zijn de coördinaten van het groene punt?
Beginpunt
Je begint altijd bij (0,0). Dit zijn de twee kruissende lijnen van je horizontale en verticale as 

Slide 5 - Diapositive

Zet op de juiste plek
Oorsprong
Sleep dit Icoon naar de oorsprong
(4,6)
Verticale as
(3,5;1,5)

Slide 6 - Question de remorquage

Welke Coördinaten hebben punt A, B, C, D?
x - as
Dit is de horizontale as. Deze gaat altijd van links naar rechts
(0,0)
Het Coördinaat (0,0) is een bijzonder Coördinaat. Deze bevind zich namelijk op de plekken waar de horizontale en verticale as elkaar kruissen. Je gaat immers 0 naar rechts en 0 naar boven. 

Deze locatie noem je de oorsprong 
y- as
Dit is de verticale as. Deze gaat altijd van onder naar boven
Assenstelsel
Hiernaast zie je een assenstelsel.
Een assenstelsel heeft altijd een horizontale en een verticale as.
Op de assen staan altijd getallen 
Roosterpunten
Een plek waar de getallen van een assenstelsel mooi samen vallen noem je roosterpunten. Dit is altijd bij hele getallen.  Soms zitten coördinaten mooi op roosterpunten maar soms ook niet.
(4,3)
Dit is het Coördinaat (4,3). Om dit Coördinaat te vinden ga je 4 stappen vanuit (0,0) naar rechts en drie stappen omhoog.

Slide 7 - Diapositive

Waar staat het coördinaat
(1,5;5) ?
E
F
A
Nergens, deze coördinaat is fout geschreven
B
Op positie E
C
Op positie F
D
Zowel positie E als F zijn goed

Slide 8 - Quiz

Wat zijn de
coördinaten van E?
A
(0,7)
B
E(0,7)
C
(7,0)
D
E(7,0)

Slide 9 - Quiz

Wat zijn de
coördinaten van B?
A
(4,2)
B
B(4,2)
C
(2,4)
D
B(2,4)

Slide 10 - Quiz

Wat zijn de
coördinaten van F?
A
F(6,5, 5)
B
F(6,5; 5)
C
F(5, 6,5)
D
F(5; 6,5)

Slide 11 - Quiz

Wat zijn de coordinaten van punt L?
A
L(1,2)
B
L(2,1)
C
(2,1)
D
(1,2)

Slide 12 - Quiz

Aan de slag
Maak de opdrachten bij 3.4 

Opgave 54 is bonus (maak je dus als laatste)
59, 60 zeer belangrijk
62,63 en 64  hoeven niet. 
timer
20:00

Slide 13 - Diapositive

Delen door 0 (extra)
Delen door nul is flauwekul.....

delen door 0 heeft geen uitkomst:
6:0= kan niet
 
7753=kanniet

Slide 14 - Diapositive

Je hebt 3 minuten. 
Maak opdracht 34 op blz. 105
timer
3:00

Slide 15 - Diapositive

1.

2.
Bij NEGATIEVE breuken!

Slide 16 - Diapositive

Negatieve breuken vereenvoudigen
Vereenvoudig


2718

Slide 17 - Diapositive

Negatieve breuken
515=
530=
2+61810=
timer
3:00

Slide 18 - Diapositive

Even aan het werk
Maken opdracht 38, 39, 41 en 42

Niet af? Dan huiswerk
timer
7:00

Slide 19 - Diapositive

Het omgekeerde van een getal



                                        Elkaars omgekeerd
7557=3535=1
3113=313=1

Slide 20 - Diapositive

Theorie
Twee getallen heten elkaars omgekeerde als hun product 1 is.

Slide 21 - Diapositive

Het omgekeerde van een getal
Twee getallen heten elkaar omgekeerde als hun product 1 is.

     is het omgekeerde van 2, want 

     is het omgekeerde van      , want 
21
212=1
85
58
8558=4040=1

Slide 22 - Diapositive

Aan de slag
Maken opdracht 44, 46, 47
timer
5:00

Slide 23 - Diapositive

Plaats haakjes, zodat de berekening klopt. 
.
6-3-2.4-8=10
timer
3:00

Slide 24 - Diapositive

negatieve breuken
kort herhalen 

Je kent de afspraken bij het maken van een assenstelsel 
theorie 
controle vragen 
Maak de opdrachten bij 3.4 
Hoe ging het?
Volgende les verder afmaken

Slide 25 - Diapositive