Wat is LessonUp
Zoeken
Kanalen
Inloggen
Registreren
‹
Terug naar zoeken
H5 Pythagoras
H5 Pythagoras
1 / 16
volgende
Slide 1:
Tekstslide
Wiskunde
Middelbare school
havo, vwo
Leerjaar 2
In deze les zitten
16 slides
, met
interactieve quizzen
en
tekstslides
.
Start les
Bewaar
Deel
Printen
Onderdelen in deze les
H5 Pythagoras
Slide 1 - Tekstslide
Samenvatting hoofdstuk
Je weet wat kwadraten en wortels zijn
Je weet wat machten zijn
Je weet wat de rechthoekszijden en de schuine zijde van een rechthoekige driehoek zijn
Je kent de stelling van Pythagoras
Je kunt Pythagoras op verschillende manieren gebruiken
Slide 2 - Tekstslide
Wat is het kwadraat van 8?
A
16
B
88
C
8
D
64
Slide 3 - Quizvraag
Welke zijde is de schuine
zijde?
A
A
B
B
C
C
D
Er is geen schuin zijde in deze driehoek
Slide 4 - Quizvraag
welke zijde is de schuine
zijde?
A
A
B
B
C
C
D
er is geen schuine zijde in deze driehoek
Slide 5 - Quizvraag
welke zijde is de schuine
zijde
A
A
B
B
C
C
D
er is geen schuine zijde in deze driehoek
Slide 6 - Quizvraag
Bereken de zijde
aangegeven met
een p?
A
√
8
9
B
√
3
C
√
1
7
D
√
3
3
Slide 7 - Quizvraag
Bereken de lengte van
schuine zijde.
Rond af op 2 decimale
A
174,33
B
13,20
C
11,76
D
10,11
Slide 8 - Quizvraag
Hieronder staan de lengte van de zijdes van vier driehoeken
Welke driehoek is niet rechthoekig?
A
Driehoek A: 8 cm, 15cm, 17 cm
B
Driehoek B: 10 cm, 26 cm, 24 cm
C
Driehoek 3: 12cm, 17cm ,21 cm
D
Driehoek 4:
Slide 9 - Quizvraag
Een gelijkbenig driehoek heeft twee zijdes van 7 cm en een basis van 10 cm. Bereken de hoogte van de driehoek, rond af op 1 decimalen.
A
4,9 cm
B
7,1 cm
C
8,6 cm
D
9,8 cm
Slide 10 - Quizvraag
Welke van de volgende bekeringen
is de juiste om de lengte van PZ te
berekenen?
A
√
8
2
+
5
2
B
√
8
2
−
5
2
C
2
8
⋅
5
D
8.5.4
Slide 11 - Quizvraag
Wat kun je met de stelling van Pythagoras?
Als twee zijden van een rechthoekige driehoek gegeven zijn, kun je de derde zijde berekenen.
Wanneer kan dat?
Als de driehoek een rechte hoek heeft (90⁰)
Als de lengte van twee zijden bekend is
Slide 12 - Tekstslide
Soms moet je de stelling van Pythagoras gebruiken, maar is er geen rechthoekige driehoek. Je moet dan zelf 1 of meerdere hulplijnen tekenen.
Slide 13 - Tekstslide
Maak altijd eerst een
schets.
Zet alle bekende
maten er bij.
Slide 14 - Tekstslide
Wat kun je nu?
Je kent nu de basisvaardigheden van Hoofdstuk 5.
Je kunt de diagnostische toets of de Herhaling maken.
Slide 15 - Tekstslide
Inhoud
2 havo- vwo - deel 2
Wat ga je nu doen?
Maken: H5 diagnostische
Hoe?
In je schrift met een berekening
Hoelang heb je de tijd?
De rest van de les
Hulp?
Kijk in je boek
Fluisterend overleggen met de buurman of buurvrouw.
Kom je er niet uit, dan vraag je de docent
Als je klaar bent?
Nakijken. Klaar? Kijk in Magister voor de volgende opgaven
1 vwo - deel 2
Wat ga je nu doen?
Maken:
Hoe?
In je schrift met een berekening
Hoelang heb je de tijd?
De rest van de les
Hulp?
Kijk in je boek
Fluisterend overleggen met de buurman of buurvrouw.
Kom je er niet uit, dan vraag je de docent
Als je klaar bent?
Nakijken. Klaar? Kijk in Magister voor de volgende opgaven
Slide 16 - Tekstslide
Meer lessen zoals deze
stelling van Pythagoras
Juni 2023
- Les met
29 slides
Wiskunde
Middelbare school
vmbo b, k
Leerjaar 2
Maandag 14 maart th2D
Maart 2023
- Les met
17 slides
Wiskunde
Middelbare school
vmbo g, t
Leerjaar 2
5.4 De stelling van Pythagoras
December 2023
- Les met
38 slides
Wiskunde
Middelbare school
vmbo g, t
Leerjaar 2
H5 Pythagoras
Februari 2022
- Les met
49 slides
Wiskunde
Middelbare school
vmbo g, t
Leerjaar 2
H5 Pythagoras
Februari 2024
- Les met
18 slides
Wiskunde
Middelbare school
vmbo g, t
Leerjaar 2
B/K2 Stelling van Pythagoras
Januari 2022
- Les met
29 slides
Wiskunde
Middelbare school
vmbo k
Leerjaar 2
Stelling van Pythagoras
Juli 2024
- Les met
30 slides
Rekenen
Basisschool
Groep 8
5.4 Pythagoras gebruiken m2c
Juni 2023
- Les met
36 slides
Wiskunde
Middelbare school
vmbo k, mavo
Leerjaar 2