In deze les zitten 40 slides, met tekstslides en 8 videos.
Lesduur is: 120 min
Onderdelen in deze les
Goniometrie
3 mavo
Slide 1 - Tekstslide
Doelen bij deze les
We hebben eerder geleerdzijden te berekenen met Pythagoras.
We hebben geleerd hoeken en zijdente berekenen met tangens.
Nu gaan we leren ook met sinus en cosinus te werken
En we gaan leren dit allemaal door elkaar gebruiken.
Doelen:
• Ik kan bepalen wanneer ik de Stelling van Pythagoras, hoekensom driehoek of
goniometrie moet gebruiken.
• Ik kan bepalen wanneer ik sinus, cosinus of tangens moet gebruiken.
• Ik kan met sinus, cosinus of tangens een hoek of een zijde van een
rechthoekige driehoek berekenen.
Slide 2 - Tekstslide
HERHALING!
Hfd. 5
Slide 3 - Tekstslide
HERHALING!
Hfd. 5
Slide 4 - Tekstslide
HERHALING!
Hfd. 5
Slide 5 - Tekstslide
tan∠B=AO
tan∠B=3218=0,563
∠B=29,4°
Voorbeeld
3 decimalen
alleen bij een rechthoekige driehoek!
tan−1(0,563)=29,4°
Slide 6 - Tekstslide
Voorbeeld
29,4°
tan∠C=AO
tan29,4=32AB
AB=tan29,4⋅32=18,0
2=36
AB?
Slide 7 - Tekstslide
tan∠B=AO
29,4°
Voorbeeld
tan29,4=AB18
AB=tan29,418=31,9
2=36
AB?
Slide 8 - Tekstslide
Slide 9 - Video
Slide 10 - Video
weet je nog?
de stelling van pythagoras
→x2
√←
Dus AC = 36,7
Slide 11 - Tekstslide
De stelling van Pythagoras hebben we ook al eerder geoefend.
Maar je kunt hem ook korter opschrijven.
Vanaf nu gebruiken we deze schrijfwijze!
Slide 12 - Tekstslide
Slide 13 - Tekstslide
Dus onthoudt de verkorte stelling van Pythagoras:
Wanneer je een korte zijde uit moet rekenen, gebruik je de volgende formule:
kz=[?]√lz2−kz2
lz=[?]√kz2+kz2
Terugblik: Pythagoras - Verkort
Dus onthoudt de verkorte stelling van Pythagoras:
Wanneer je een korte zijde uit moet rekenen, gebruik je de volgende formule:
Slide 14 - Tekstslide
10.2 - Sinus, cosinus, tangens
We hebben eerder gezien dat TANGENS de verhouding is tussen de overstaande en aanliggende zijde:
(hoek B)
Slide 15 - Tekstslide
Maar je hebt ook nog 2 andere verhoudingen, namelijk de SINUS en de COSINUS.
Sinus hoek B = AC : AB
Cosinus hoek B = BC : AB
Afhankelijk van wat er gevraagd wordt, kies je voor sinus, cosinus of tangens
Slide 16 - Tekstslide
Slide 17 - Tekstslide
10.3 - Hoeken berekenen met Sinus, cosinus, tangens
Slide 18 - Tekstslide
Slide 19 - Tekstslide
Slide 20 - Tekstslide
hoek berekenen met sinus
sin∠A=SO=36,718=0,490
∠A=29,4°
nu dus sin -1 of shift sin
op de rekenmachine
3 decimalen
Slide 21 - Tekstslide
hoek berekenen met cosinus
cos∠A=SA=36,732=0,872
∠A=29,3°
3 decimalen
nu dus cos -1 of shift cos
op de rekenmachine
Slide 22 - Tekstslide
zijde berekenen met sinus
29,4°
BC?
sin∠B=SO
sin29,4=BC18
2=36
BC=sin29,418=36,7
Slide 23 - Tekstslide
Slide 24 - Video
Slide 25 - Video
10.4 - Zijden berekenen met Sinus, cosinus, tangens
Slide 26 - Tekstslide
Slide 27 - Tekstslide
Slide 28 - Video
Slide 29 - Video
10.5 - Zijden en hoeken berekenen
Slide 30 - Tekstslide
Hoe beslis je wat je moet doen?
Stappenplan voor het gebruik van:
sinus, cosinus of tangens
Lees de vraag goed
Kijk goed naar de afbeelding
Wat moet je berekenen? Een hoek of een zijde?
Welke gegevens (zijden en hoeken) weet je? Schrijf ze op
Welke van SOS-CAS-TOA kan je dan gebruiken?
Schrijf alles netjes op
Geef antwoord op de vraag
Op de volgende pagina wordt verwezen naar een beslisboom. Kijk maar eens!
Slide 31 - Tekstslide
www.geogebra.org
Slide 32 - Link
Slide 33 - Video
Slide 34 - Tekstslide
Slide 35 - Tekstslide
LET OP! De opgave bepaalt wat je moet gebruiken!
Hoek gevraagd - 1. Je weet 2 zijden: soscastoa
- 2. Je weet 2 hoeken: hoekensom
Zijde gevraagd - 1. Je weet 2 zijden: Pythagoras of soscastoa
- 2. Je weet 1 zijde / 1 hoek: soscastoa
Slide 36 - Tekstslide
weet je nog?
hellingspercentage∠A=tan∠A⋅100
tan∠A=AO=3218=0,563
hellingspercentage∠A=0,563⋅100
= 56,3%
3 decimalen
Voor het uitrekenen van het hellingspercentage heb je altijd tan nodig. Als je overstaande of aanliggende zijde niet weet, dan eerst uitrekenen met Pythagoras (zie voorbeeld)
Slide 37 - Tekstslide
Slide 38 - Tekstslide
Slide 39 - Video
om te onthouden...
... berekeningen met cos, sin, tan en pythagoras
alleen in een rechthoekige driehoek
... maak altijd een schets waarin je alle gegevens zet
... bekijk eerst welke zijden en hoeken je hebt, daarna kan je bepalen of je sin, cos of tan of pythagoras