13.4 Hoeken berekenen V

Welkom!




Laat alles in je tas zitten behalve een markeerstift.
We gaan het proefwerk bespreken.
1 / 36
next
Slide 1: Slide
WiskundeMiddelbare schoolvmbo tLeerjaar 1

This lesson contains 36 slides, with interactive quizzes and text slides.

time-iconLesson duration is: 120 min

Items in this lesson

Welkom!




Laat alles in je tas zitten behalve een markeerstift.
We gaan het proefwerk bespreken.

Slide 1 - Slide

Programma

Start

Proefwerk bespreken

Zelfstandig aan de slag (proefwerk bespreken) 

Afsluiting






Slide 2 - Slide

13.4 Hoeken berekenen

Ga rustig zitten op je plek.
Doe je telefoon uit en in de telefoontas of in je tas.
Leg je spullen open op tafel en Ipad omgedraaid neer.

      20 juni

Slide 3 - Slide

Lesdoel

In deze les ..


.. leer je hoeken te berekenen bij snijdende lijnen.

.. leer je de notatiewijze eigen te maken.

.. leer je een onbekende hoek in een driehoek en vierhoek te berekenen.



Slide 4 - Slide

Instructie
Loop in je eigen tempo door de les.

Beantwoord mijn vragen.
Lees de theorie goed door en neem aantekening over.
Maak de huiswerkopgaven, maar denk om je notatie.

Bij vragen overleg eerst met je buurman en vraag vervolgens de docent.

Slide 5 - Slide

13.3 Overstaande hoeken
Twee lijnen die elkaar snijden 
maken vier hoeken.

De overstaande hoeken zijn 
even groot.


Slide 6 - Slide

voorbeeld

Slide 7 - Slide

uitwerking

Slide 8 - Slide

uitwerking

Slide 9 - Slide

uitwerking

Slide 10 - Slide

Slide 11 - Slide

13.3 Hoeken berekenen
  1. Gestrekte hoek = 180 graden
  2. Rechte hoek = 90 graden
  3. Volle hoek = 360 graden
  4. Overstaande hoeken zijn gelijk

Let op:  hoeken berekenen is niet meten!!  (Geen geodriehoek nodig!)

WAT?

HOE?

WAAROM?

Slide 12 - Slide

Vragen over het huiswerk?

Slide 13 - Mind map

13.4 Hoekensom driehoek

De drie hoeken van een driehoek zijn even groot als een gestrekte hoek. In elke driehoek zijn de hoeken opgeteld samen 180 graden! 



Hoekensom driehoek = 180 graden

Slide 14 - Slide

Hoekensom driehoek

A+B+C=180°

Slide 15 - Slide

13.4 Hoekensom vierhoek

De vier hoeken van een vierhoek zijn even groot als een volle hoek. In elke vierhoek zijn de hoeken opgeteld samen 360 graden.



Hoekensom vierhoek = 360 graden

Slide 16 - Slide

 Hoeken berekenen
  1. Gestrekte hoek = 180 graden
  2. Rechte hoek = 90 graden
  3. Volle hoek = 360 graden
  4. Overstaande hoeken zijn gelijk
  5. Hoekensom driehoek = 180 graden
  6. Hoekensom vierhoek = 360 graden
  7. Basishoeken van een gelijkbenige driehoek zijn gelijk

WAT?

HOE?

WAAROM?

Slide 17 - Slide

Hoeken berekenen

Gebruik de eigenschappen van soorten hoeken en vlakke figuren om een hoek te berekenen.


Let op hoeken berekenen is niet meten!! (Geen geodriehoek nodig!)

A1=180°40°=140°
(gestrekte hoek)
Wat
Hoe
Waarom

Slide 18 - Slide

Aan de slag

Maak: paragraaf 13.4 (volg je eigen leerroute)

Kijk je werk goed na met een andere kleur en verbeter je fouten!






Je gaat rustig aan het werk!
Je mag met muziek en oortjes werken, 
let op dat de muziek niet te hard staat. 
  • Oortjes in? Mond op slot! 
  • Afspeellijst aan, iPad/telefoon omgedraaid op tafel!
Heb je een vraag? Lees je aantekeningen van zonet nog eens door en/of overleg op fluistertoon vóór je je vinger opsteekt. 

Slide 19 - Slide

Aan de slag

Maak: paragraaf 13.5 (volg je eigen leerroute)

Kijk je werk goed na met een andere kleur en verbeter je fouten!






Je gaat rustig aan het werk!
Je mag met muziek en oortjes werken, 
let op dat de muziek niet te hard staat. 
  • Oortjes in? Mond op slot! 
  • Afspeellijst aan, iPad/telefoon omgedraaid op tafel!
Heb je een vraag? Lees je aantekeningen van zonet nog eens door en/of overleg op fluistertoon vóór je je vinger opsteekt. 

Slide 20 - Slide


Zelf aan de slag
Maak een foto van opgave 24 uit je schrift.
Upload deze hieronder!

Slide 21 - Open question

11.4 -11.5 Hoeken berekenen
  1. Gestrekte hoek = 180 graden
  2. Rechte hoek = 90 graden
  3. Volle hoek = 360 graden
  4. Overstaande hoeken zijn gelijk
  5. Hoekensom driehoek = 180 graden
  6. Hoekensom vierhoek = 360 graden
  7. Basishoeken van een gelijkbenige driehoek zijn gelijk

WAT?

HOE?

WAAROM?

Slide 22 - Slide

Huiswerk
Maken: paragraaf 6.2 (af) en 6.3 (3 opgaven)!
Volg hierbij je eigen leerroute.

Slide 23 - Slide

11.4 Hoeken berekenen

Gebruik de eigenschappen van soorten hoeken en vlakke figuren om een hoek te berekenen.


Let op hoeken berekenen is niet meten!! (Geen geodriehoek nodig!)

A1=180°40°=140°
(gestrekte hoek)
Wat
Hoe
Waarom

Slide 24 - Slide

11.5 Hoekensom vierhoek

In een vierhoek zijn de hoeken opgeteld samen 360 graden!  Je kunt namelijk twee driehoeken tekenen in een vierhoek.



Hoekensom driehoek = 360 graden

Slide 25 - Slide

13.1 Lijnsymmetrie
Een figuur is lijnsymmetrisch of spiegelsymmetrisch  als deze uit twee helften bestaat, die elkaars spiegelbeeld zijn.

De vouwlijn noemen we de symmetrieas.

Slide 26 - Slide

13.2 Draaisymmetrie
Een figuur is draaisymmetrisch als je het rondom een draaipunt kunt draaien en het weer precies op zichzelf past.

De kleinste draaihoek moet altijd kleiner dan 180 graden zijn.
Voorbeeld: 
360 : 5 =72
Kleinste draaihoek = 72 graden

Slide 27 - Slide

Slide 28 - Slide

11.3 Eigenschappen van driehoeken

Rechthoekige driehoek   


Heeft een rechte hoek 

              (rechte hoek)

            


A=90°

Slide 29 - Slide

11.3 Eigenschappen van driehoeken

Gelijkbenige driehoek   


Twee gelijke zijden 

DF = EF

Twee gelijke hoeken 

              (basishoeken)

Lijnsymmetrisch

1 symmetrieas

D=E

Slide 30 - Slide

11.3 Eigenschappen van driehoeken

Gelijkzijdige driehoek   


Alle zijden zijn even lang.

GH = HI = IG

Alle hoeken zijn even groot.

              

Lijn- en draaisymmetrisch

3 symmetrieassen, kleinste draaihoek = 120 graden

G=H=I=60°

Slide 31 - Slide

Eigenschappen van een vlieger
  • één diagonaal is de symmetrieas
  • de symmetrieas deelt de andere diagonaal doormidden
  • de diagonalen staan loodrecht op elkaar
  • twee paar zijden zijn even lang

Slide 32 - Slide

Vijf eigenschappen van een parallellogram.

  • de overstaande zijden zijn even lang
  • de overstaande zijden zijn evenwijdig
  • de overstaande hoeken zijn even groot
  • een parallellogram is draaisymmetrisch 
  • de diagonalen delen elkaar doormidden



Slide 33 - Slide

Eigenschappen van een ruit

Een ruit is een bijzondere parallellogram, dus onderstaande eigenschappen gelden ook!!

  • de overstaande zijden zijn even lang
  • de overstaande zijden zijn evenwijdig
  • de overstaande hoeken zijn even groot
  • een parallellogram is draaisymmetrisch 
  • de diagonalen delen elkaar doormidden


En voor een ruit geldt ook nog ..

  • alle zijden zijn even lang
  • diagonalen staan loodrecht op elkaar
  • diagonalen zijn de symmetrieassen 

Slide 34 - Slide

Afsluiting 
Hoe ging het vandaag?






Slide 35 - Slide


Afsluitende vraag
Wat vind jij nog lastig aan dit hoofdstuk?

Slide 36 - Open question