What is LessonUp
Search
Channels
Log in
Register
‹
Return to search
Verschillende verbanden
Periodieke verbanden
In een periodieke grafiek is sprake van schommeling om een horizontale evenwichtslijn met een vaste periode.
de periode is de kortste tijd die het duurt tot de grafiek zich herhaalt
evenwichtsstand is het midden tussen met maximum en het minimm van de grafiek (maximum +minimum) :2
amplitude is het verschil tussen het miximum (of het minimum) en de evenwichtsstand
frequentie is het aantal perioden dat past in een tijdseenheid (bijvoorbeeld een dag of een uur)
1 / 46
next
Slide 1:
Slide
Wiskunde
Middelbare school
vmbo g, t, mavo
Leerjaar 3,4
This lesson contains
46 slides
, with
interactive quizzes
and
text slides
.
Lesson duration is:
50 min
Start lesson
Save
Share
Print lesson
Items in this lesson
Periodieke verbanden
In een periodieke grafiek is sprake van schommeling om een horizontale evenwichtslijn met een vaste periode.
de periode is de kortste tijd die het duurt tot de grafiek zich herhaalt
evenwichtsstand is het midden tussen met maximum en het minimm van de grafiek (maximum +minimum) :2
amplitude is het verschil tussen het miximum (of het minimum) en de evenwichtsstand
frequentie is het aantal perioden dat past in een tijdseenheid (bijvoorbeeld een dag of een uur)
Slide 1 - Slide
Verschillende verbanden
Slide 2 - Slide
Periode =
A
2 sec
B
4 sec
C
8 sec
Slide 3 - Quiz
Evenwichtsstand =
A
2 m
B
3 m
C
4 m
D
5 m
Slide 4 - Quiz
Amplitude =
A
2 m
B
3 m
C
4 m
D
5 m
Slide 5 - Quiz
Weet je nog.......
Hoe Moeten Wij Van Die Onvoldoendes Afkomen
(
)
x
4
√
⋅
:
+
−
Slide 6 - Slide
Voorbeelden
(
8
−
3
)
2
⋅
5
=
−
6
−
(
1
2
:
4
)
2
⋅
3
2
=
Slide 7 - Slide
(
8
−
3
)
2
⋅
5
=
2
5
⋅
5
=
1
2
5
(
5
)
2
⋅
5
=
−
6
−
(
1
2
:
4
)
2
⋅
3
2
=
−
6
−
3
2
⋅
3
2
=
−
6
−
9
⋅
9
=
−
6
−
8
1
=
−
8
7
Let op: schrijf alle tussenstappen op!
Slide 8 - Slide
−
(
−
6
)
2
+
3
⋅
−
5
2
=
Slide 9 - Slide
−
(
−
6
)
2
+
3
⋅
−
5
2
=
−
3
6
+
3
⋅
−
2
5
=
−
3
6
−
7
5
=
−
1
1
1
Let op: schrijf alle tussenstappen op!
Slide 10 - Slide
(
−
8
)
2
+
7
=
Slide 11 - Open question
Rekenen met een kwadratische formule
Als ze 3 meter van de kant is, wat is dan haar hoogte?
h=hoogte in meters, a=afstand van de kant in meters
h
=
0
,
2
5
a
2
−
3
a
+
5
Slide 12 - Slide
Rekenen met een kwadratische formule
Als ze 3 meter van de kant is, wat is dan haar hoogte?
Oplossing: 3 invullen op de plaats van de 'a'
Op 3 meter van de kant is ze -1,75 m hoog (of 1,75 m onder water)
h=hoogte in meters, a=afstand van de kant in meters
h
=
0
,
2
5
a
2
−
3
a
+
5
h
=
2
,
2
5
−
9
+
5
=
−
1
,
7
5
h
=
0
,
2
5
⋅
3
2
−
3
⋅
3
+
5
Slide 13 - Slide
Een parabool
Een parabool heeft een kwadratische formule:
als a>0 dalparabool
als a<0 bergparabool
Een parabool is altijd symmetrisch, de symmetrie-as loopt door de top
y
=
a
x
2
+
b
x
+
c
op de plaats van de letters a, b en c staat in de formule een getal dus bijvoorbeeld
y
=
−
3
x
2
+
8
x
−
2
Slide 14 - Slide
y
=
−
3
x
2
+
6
x
−
1
A
bergparabool
B
dalparabool
Slide 15 - Quiz
y
=
0
,
2
5
x
2
+
6
x
−
1
A
bergparabool
B
dalparabool
Slide 16 - Quiz
y
=
0
,
2
5
x
−
6
x
2
−
1
A
bergparabool
B
dalparabool
Slide 17 - Quiz
y
=
x
2
−
6
x
−
1
A
bergparabool
B
dalparabool
Slide 18 - Quiz
een dal-parabool heeft een minimum,
het laagste punt .
een bergparabool heeft een maximum,
het hoogste punt
Slide 19 - Slide
Slide 20 - Slide
Top van de parabool
Formule van een parabool:
a = het getal voor de x
2
b = het getal voor de x
c = het getal zonder x
y
=
a
x
2
+
b
x
+
c
Dit betekent:
y
=
a
⋅
x
2
+
b
⋅
x
+
c
Slide 21 - Slide
Wat zijn a, b en c in de volgende formule:
y
=
−
4
x
2
+
2
x
+
7
A
a= 4, b=2, c=7
B
a=-4, b=-2, c=7
C
a=4, b=-2, c=7
D
a=-4, b=2, c=7
Slide 22 - Quiz
Wat zijn a, b en c in de volgende formule:
y
=
−
x
2
+
2
x
+
7
A
a= -1, b=2, c=7
B
a=-0, b=2, c=7
C
a=0, b=2, c=7
D
a=1, b=2, c=7
Slide 23 - Quiz
Wat zijn a, b en c in de volgende formule:
y
=
x
2
+
2
+
7
x
A
a= 0, b=2, c=7
B
a=1, b=2, c=7
C
a=0, b=7, c=2
D
a=1, b=7, c=2
Slide 24 - Quiz
Wat zijn a, b en c in de volgende formule:
y
=
3
x
2
+
7
A
a= 3, b=7, c=0
B
a=3, b=0, c=7
Slide 25 - Quiz
Wat zijn a, b en c in de volgende formule:
y
=
−
3
x
2
−
7
x
A
a= -3, b=-7, c=0
B
a=-3, b=0, c=-7
Slide 26 - Quiz
Stappenplan berekenen top parabool
a, b en c opschrijven
a en b invullen in (let op de haakjes om (2a))
invullen in de formule
coördinaten opschrijven
x
t
o
p
=
(
2
⋅
a
)
−
b
x
t
o
p
y
t
o
p
=
a
x
t
o
p
2
+
b
x
t
o
p
+
c
(
x
t
o
p
,
y
t
o
p
)
Slide 27 - Slide
a, b en c opschrijven
uitrekenen
uitrekenen
coördinaten opschrijven
top:
Stappenplan top berekenen
x
t
o
p
y
t
o
p
y
=
x
2
−
6
x
+
5
Slide 28 - Slide
a, b en c opschrijven
uitrekenen
uitrekenen
coördinaten opschrijven
a=1, b=-6, c=5
top: (3,-4)
Stappenplan top berekenen
x
t
o
p
y
t
o
p
y
=
x
2
−
6
x
+
5
y
t
o
p
=
3
2
−
6
⋅
3
+
5
=
−
4
x
t
o
p
=
2
a
−
b
=
2
⋅
1
−
−
6
=
3
Slide 29 - Slide
a, b en c opschrijven
uitrekenen
uitrekenen
coördinaten opschrijven
top:
Stappenplan top berekenen
x
t
o
p
y
t
o
p
y
=
0
,
5
x
2
+
4
x
+
5
Slide 30 - Slide
a, b en c opschrijven
uitrekenen
uitrekenen
coördinaten opschrijven
a=0,5, b=4, c=5
top: (-4,3)
Stappenplan top berekenen
x
t
o
p
y
t
o
p
y
=
0
,
5
x
2
+
4
x
+
5
y
t
o
p
=
0
,
5
⋅
(
−
4
)
2
+
4
⋅
−
4
+
5
=
−
3
x
t
o
p
=
2
⋅
a
−
b
=
(
2
⋅
0
,
5
)
−
4
=
−
4
Slide 31 - Slide
Stappenplan tekenen parabool
a, b en c opschrijven
a en b invullen in (let op de haakjes om (2a))
invullen in de formule
coördinaten opschrijven
tabel maken van 7 punten met de top in het midden
grafiek tekenen
x
t
o
p
=
(
2
⋅
a
)
−
b
x
t
o
p
y
t
o
p
=
a
x
t
o
p
2
+
b
x
t
o
p
+
c
(
x
t
o
p
,
y
t
o
p
)
Slide 32 - Slide
Wortelverbanden
√
8
1
=
9
√
4
9
=
7
→
9
2
=
8
1
→
7
2
=
4
9
Slide 33 - Slide
voorbeeld
3
√
6
2
5
−
2
√
9
0
0
=
Slide 34 - Slide
3
√
6
2
5
−
2
√
9
0
0
=
3
⋅
2
5
−
2
⋅
3
0
=
7
5
−
6
0
=
1
5
Slide 35 - Slide
Wortelverbanden
Grafiek loopt zoals op het plaatje
Let op bij het invullen op je rekenmachine
√
9
⋅
9
=
2
7
√
(
9
⋅
9
)
=
9
Slide 36 - Slide
reken uit
√
2
5
+
2
4
=
Slide 37 - Open question
reken uit
√
2
5
+
2
4
=
Slide 38 - Open question
Machtsverbanden
2
6
=
2
⋅
2
⋅
2
⋅
2
⋅
2
⋅
2
=
6
4
Machtsverband = formule met een macht
De grafiek van een machtsverband is een vloeiende kromme.
op je rekenmachine: 2^6
Slide 39 - Slide
Machtsverbanden
I
=
3
4
⋅
π
⋅
r
3
I= inhoud in cm
3
r= straal in cm
straal = 8cm, hoeveel cm
3
is de inhoud?
Slide 40 - Slide
Machtsverbanden
I
=
3
4
⋅
π
⋅
r
3
I= inhoud in cm
3
r= straal in cm
Dus de inhoud is ongeveer 2144,7 cm
3
I
=
3
4
⋅
π
⋅
8
3
=
2
1
4
4
,
6
6
0
.
.
.
straal = 8cm, hoeveel cm
3
is de inhoud?
Slide 41 - Slide
Andere grafieken
Slide 42 - Slide
Andere grafieken
Slide 43 - Slide
In deze les leerde je werken
en rekenen met...
...periodieke verbanden
...kwadratische verbanden
...wortelverbanden
...machtsverbanden
... andere grafieken
Slide 44 - Slide
Noem 1 ding wat je geleerd hebt in deze les
Slide 45 - Open question
Wat snap je nog niet zo goed
aan deze les?
Slide 46 - Open question
More lessons like this
Verschillende verbanden
April 2018
- Lesson with
32 slides
Wiskunde
Middelbare school
vmbo g, t, mavo
Leerjaar 3,4
Kwadratische verbanden
April 2018
- Lesson with
22 slides
Wiskunde
Middelbare school
havo
Leerjaar 2
Verschillende verbanden
February 2023
- Lesson with
47 slides
Wiskunde
Middelbare school
vmbo g, t, mavo
Leerjaar 3,4
Verschillende verbanden
November 2020
- Lesson with
38 slides
Wiskunde
Middelbare school
vmbo g, t, mavo
Leerjaar 3,4
H 6.1
January 2022
- Lesson with
25 slides
Wiskunde
Middelbare school
vmbo t
Leerjaar 3
H6.2 Top van een parabool
February 2021
- Lesson with
16 slides
Wiskunde
Middelbare school
vmbo t, mavo
Leerjaar 3
at3e herhaling Kwadratische verbanden
January 2021
- Lesson with
30 slides
Wiskunde
Middelbare school
vwo
Leerjaar 3
Kwadratische verbanden
January 2017
- Lesson with
23 slides
Wiskunde
Middelbare school
vmbo g, t
Leerjaar 3,4