6.1+6.2 Reactiesnelheid

6.1+6.2 Reactiesnelheid
1 / 29
suivant
Slide 1: Diapositive
ScheikundeMiddelbare schoolhavoLeerjaar 4

Cette leçon contient 29 diapositives, avec quiz interactifs, diapositives de texte et 4 vidéos.

time-iconLa durée de la leçon est: 100 min

Éléments de cette leçon

6.1+6.2 Reactiesnelheid

Slide 1 - Diapositive

Lesdoelen
  • Je leert welke 3 factoren nodig zijn voor een effectieve botsing en dus tot een reactie leiden.
  • Je leert welke 5 factoren invloed hebben om de reactiesnelheid.
  • Je leert om de reactiesnelheid te berekenen en dit in een diagram weer te geven.

Slide 2 - Diapositive

Deze les

  • Demo thee
  • Filmpje botsende deeltjesmodel
  • Uitleg botsende deeltjesmodel
  • Demo melkpoeder
  • Maken vragen 5, 13, 15, 17AB, 20 
  • Uitleg reactiesnelheid berekenen 
  • Maken vragen 6, 9, 11
  • Exit kaart

Slide 3 - Diapositive

Demo thee
Waarom kun je wel thee zetten met heet water, maar niet met koud water?

Slide 4 - Diapositive

Filmpje botsende deeltjesmodel

Let goed op tijdens het filmpje en beantwoord de vraag:

  1. Wat is nodig voor een effectieve botsing, dus een reactie?

    Slide 5 - Diapositive

    Slide 6 - Vidéo

    Dus wat is nodig voor een effectieve botsing (3 factoren)?

    Slide 7 - Question ouverte

    Voor een effectieve botsing:
    • Moeten de deeltjes in de gelegenheid zijn om tegen elkaar te botsen;
    • Moet de totale energie van de stoffen voldoende hoog zijn;
    • Moet de ruimtelijke oriëntatie van de deeltjes juist zijn.



    Slide 8 - Diapositive

    Slide 9 - Vidéo

    Filmpje botsende deeltjesmodel

    Let goed op tijdens het filmpje en beantwoord de vraag:

    2. Hoe kun je een reactie versnellen?

    Slide 10 - Diapositive

    Slide 11 - Vidéo

    Welke factoren hebben invloed op de reactiesnelheid?

    Slide 12 - Question ouverte

    Factoren die invloed hebben op de reactiesnelheid 

    • Soort stof
    • Concentratie (volume, druk): meer deeltjes in ruimte om te botsen

    • Temperatuur: deeltjes hebben grotere snelheid
    • Verdelingsgraad: deeltjes hebben groter contactoppervlak 
    • Aanwezigheid katalysator: deeltjes komen gedwongen bij elkaar



    Slide 13 - Diapositive

    Demo melkpoeder

    Slide 14 - Diapositive

    Slide 15 - Vidéo

    Leg uit met behulp van het botsende deeltjesmodel waarom melkpoeder wel brandt als het wordt gestrooid op de kaars, maar niet als het op een hoopje ligt en de lucifer erbij wordt gehouden.

    Slide 16 - Question ouverte

    Aan de slag

    • Maken vragen 5, 13, 15, 17, 20 

    Slide 17 - Diapositive

    Reactiesnelheid berekenen
    • Gemiddelde reactiesnelheid
    • Uitgedrukt in mol per liter per seconde (mol L-1 s-1)

    • Snelheid s = molariteit (mol/L) / tijd (s)



    Slide 18 - Diapositive

    Reactiesnelheid berekenen
    • Benoem bij de reactiesnelheid vanuit welke stof je beredeneert OF corrigeer met de coëfficiënten. 
    • Voorbeeld op volgende slide.



    Slide 19 - Diapositive

    Voorbeeld: 2 A (g) -> B (g)
    Gegevens: [A] daalt in 8,40 minuten van 0,200 M naar 0,166 M.
    Bereken de gemiddelde reactiesnelheid.
    t = 8,40 min * 60 = 504 s
    [A] = 0,200-0,166=0,034 M      [B]=0,034/2=0,017 M
    s (A)= 0,034 M / 504 s = 6,8 mol A L-1 s-1 
    s (B) = 0,017 M / 504 s = 3,4 mol B L-1 s-1
    OF s=6,8/2=3,4 mol L-1 s-1 (maakt niet uit of je reactiesnelheid voor A of B geeft als je deelt door de coëfficiënt uit de reactievergelijking).

    Slide 20 - Diapositive

    Reactiesnelheid 
    Voorbeeld: 2 NH3 --> N2 + 3 H2

    • Begin reactie 0 mmol H2
    • Lijn q geeft mmol H2 aan op einde reactie.
    • Reactiesnelheid begint hoog, neemt af in de tijd. Bij q is reactiesnelheid 0.

    Slide 21 - Diapositive

    Voorbeeld: Mg + 2 H+ -> Mg2+ + H2
    Bereken de gemiddelde reactiesnelheid tussen 10 en 20 seconden in mol H2 per seconde (T=298 K, p=p0).


      Slide 22 - Diapositive



      Op tijdstip t is de reactie klaar. Welk diagram geeft de juiste weergave?
      A
      Diagram A
      B
      Diagram B
      C
      Diagram C
      D
      Diagram D

      Slide 23 - Quiz

      Wat is de werking van stof X?
      A
      Reactiemengsel afkoelen
      B
      Werkt als katalysator
      C
      Levert ook zuurstof
      D
      Verbruikt zuurstof

      Slide 24 - Quiz

      Snelheidsvergelijking
      • Uit experimenten kun je bepalen van welke concentraties de reactiesnelheid afhangt.
      • Dit geef je weer in een snelheidsvergelijking.
      • Reactiesnelheid recht evenredig verband met stof A: s = k * [A]
      • k = constante

      Slide 25 - Diapositive

      Voorbeeld: 2 ICl + H2 -> I2 + 2 HCl



      • Verdubbeling [ICl] geeft verdubbeling van s (proef 1+2).
      • Halvering [H2] geeft halvering van s (proef 1+3)
      • Recht evenredig verband tussen snelheid en beide beginconcentraties.
      • s = k * [ICl] * [H2]

      Slide 26 - Diapositive


      A
      s=k*[Br-]*[BrO3-]*[H+]
      B
      s=k*[Br-]*[BrO3-]*2[H+]
      C
      s=k*[Br-]*[BrO3-]*[H+]^2
      D
      s=k*[Br-]*[H+]^2

      Slide 27 - Quiz

      Uitleg bij quizvraag
      • Verdubbeling [Br-] geeft halvering tijd, lineair verband (proef 1+2).
      • Verdubbeling [BrO3-] geeft halvering tijd, lineair verband (proef 1+3).
      • Verdubbeling [H+] geeft 4x minder tijd, kwadratisch verband (proef 1+4).
      • s=k*[Br-]*[BrO3-]*[H+]2

      Slide 28 - Diapositive

      Aan de slag

      • Maken vragen 6, 9, 11

      Slide 29 - Diapositive