Hybride onderwijs (leerdoel 5)

H12  Rekenenen met variabelen
Leerdoel 5
HV1
Welkom!
1 / 32
suivant
Slide 1: Diapositive
WiskundeMiddelbare schoolhavo, vwoLeerjaar 1

Cette leçon contient 32 diapositives, avec quiz interactifs et diapositives de texte.

time-iconLa durée de la leçon est: 45 min

Éléments de cette leçon

H12  Rekenenen met variabelen
Leerdoel 5
HV1
Welkom!

Slide 1 - Diapositive

Lesindeling
Start:             absentie
                     uitleg hoofdstuk 12
Werken:          aan de slag 
                     




HV1

Slide 2 - Diapositive

Werkwijze hybride onderwijs
10 minuten Start
absentie en uitleg via teams

30 minuten verwerking
Thuis:      zelfstandig de gedeelde les doorlopen en vragen via teams chat stellen
School:    aan de slag in het lokaal met en onder toezicht van de docent

Geen centrale afsluiting online!




Slide 3 - Diapositive

Absentiecontrole

Slide 4 - Diapositive

Machten vermenigvuldigen
Dit kan alleen als het grondtal hetzelfde is!

a • a = a²
a² • a³ = a•a • a•a•a = a² ⁺³ = a⁵
a² • b³ = a² b³ 
a2b3=a2b3
Rekenregel:
Vermenigvuldigen van machten kan alleen als het grondtal hetzelfde is. 
Je telt de exponenten bij elkaar op.

Slide 5 - Diapositive

Machten optellen en aftrekken
De machten moeten hierbij hetzelfde zijn, dus zowel het grondtal als het exponent    
                                        


a + a = 2a

a² + a² = 2a² 

6a³ + 2a³ = 8a³
a + b ≠ 
Het grondtal is niet hetzelfde.

a² + a³ ≠ 
De exponent is niet hetzelfde.

Slide 6 - Diapositive


Schrijf de volgende formule korter.
q = 5r • p² • 4
Maak de opgave eerst in je schrift en upload een foto.

timer
1:00

Slide 7 - Question ouverte


Zijn er nog vragen over hoofdstuk 12?
Leerdoel 1 t/m 3

Slide 8 - Question ouverte

Slide 9 - Diapositive

Paragraaf 4 
Ik weet wat kwadranten zijn.
Ik kan een lineaire formule opstellen bij een grafiek.

Slide 10 - Diapositive

Je hebt eerder geleerd wat een assenstelsel is.

Een assenstelsel bestaat uit

  • horizontale as (x-as)
  • verticale as (y-as)
  • oorsprong, punt O (0,0)

Slide 11 - Diapositive

Je hebt eerder geleerd wat coördinaten zijn.
De plaats van een punt op de kaart of in een assenstelsel geven we aan met twee getallen. Deze getallen heten coördinaten.

Notatie 


Een roosterpunt is het snijpunt van twee roosterlijnen.
Voorbeeld: A(3,1) en B (0,2).


 
Hoofdletter (horizontaal, verticaal)
P (x,y)

Slide 12 - Diapositive

Lineaire formules
Een lineaire formule heeft altijd de vorm:

De b is de beginwaarde (begingetal). Snijpunt met de verticale as.
De a is de stapgrootte. Wat gebeurt er als je een
stap opzij gaat?
 

De grafiek van een lineaire formule is een rechte lijn.



a > 0  stijgende lijn
a = 0  horizontale lijn
a < 0  dalende lijn
 y = a x + b

Slide 13 - Diapositive

Lineaire formules
Een lineaire formule heeft altijd de vorm:

De b is de beginwaarde (begingetal). Snijpunt met de verticale as.
De a is de stapgrootte. Wat gebeurt er als je een
stap opzij gaat?
 

De grafiek van een lineaire formule is een rechte lijn.



a > 0  stijgende lijn
a = 0  horizontale lijn
a < 0  dalende lijn
 y = a x + b

Slide 14 - Diapositive

Lineaire formules
Een lineaire formule heeft altijd de vorm:

De b is de beginwaarde (begingetal). Snijpunt met de verticale as.
De a is de stapgrootte. Wat gebeurt er als je een stap opzij gaat?
 

De grafiek van een lineaire formule is een rechte lijn.



a > 0  stijgende lijn
a = 0  horizontale lijn
a < 0  dalende lijn
 y = a x + b

Slide 15 - Diapositive

Lineaire formules
Een lineaire formule heeft altijd de vorm:

De b is de beginwaarde (begingetal). Snijpunt met de verticale as.
De a is de stapgrootte. Wat gebeurt er als je een stap opzij gaat?
 




De grafiek van een lineaire formule is een rechte lijn.



a > 0  stijgende lijn
a = 0  horizontale lijn
a < 0  dalende lijn
 y = a x + b

Slide 16 - Diapositive

Lineaire formules
Een lineaire formule heeft altijd de vorm:

De b is de beginwaarde (begingetal). Snijpunt met de verticale as.
De a is de stapgrootte. Wat gebeurt er als je een stap opzij gaat?
 




De grafiek van een lineaire formule is een rechte lijn.



a > 0  stijgende lijn
a = 0  horizontale lijn
a < 0  dalende lijn
 y = a x + b

Slide 17 - Diapositive

Een lineaire formule opstellen.
Stap 1       Noteer de standaardvorm y = a x + b 
Stap 2      Zoek twee roosterpunten en noteer deze in een tabel.
Stap 3      Bereken de stapgrootte (a), dit kun je doen door a = ∆ y : ∆ x.
Stap 4      Noteer de beginwaarde (b), dit is het snijpunt met de verticale as (y-as). 
Stap 5      Noteer de lineaire formule, door a en b in te vullen.

   


delta (∆), dit teken gebruiken we in de wiskunde voor het woord verschil.

Slide 18 - Diapositive





We stellen een formule op voor de groen grafiek.
De grafiek is een rechte lijn, dus we hebben te maken met een lineaire formule.

Standaardvorm: y= ax +b

Stapgrootte berekenen.
a = ∆ y : ∆ x.
a = -6 : 8 = -¾

De grafiek loopt door (0, 14) , dus b= 14

Dus de formule bij de groene grafiek is y= x +14










Stap 1       Noteer de standaardvorm y = a x + b 
Stap 2      Zoek twee roosterpunten en noteer deze in een                tabel.
Stap 3      Bereken de stapgrootte (a), door a = ∆ y : ∆ x.
Stap 4      Noteer de beginwaarde (b), dit is het snijpunt                    met de verticale as (y-as). 
Stap 5     Noteer de lineaire formule, door a en b in te                      vullen.

   


delta (∆), dit teken gebruiken we in de wiskunde voor het woord verschil.
Voorbeeld lineaire formule opstellen.
x
0
8
y
14
8

Slide 19 - Diapositive





We stellen een formule op voor de groen grafiek.
De grafiek is een rechte lijn, dus we hebben te maken met een lineaire formule.

Standaardvorm: y= ax +b


Stapgrootte berekenen.
a = ∆ y : ∆ x.
a = -6 : 8 = -¾

De grafiek loopt door (0, 14) , dus b= 14

Dus de formule bij de groene grafiek is y= x +14










Stap 1       Noteer de standaardvorm y = a x + b 
Stap 2      Zoek twee roosterpunten en noteer deze in een                tabel.
Stap 3      Bereken de stapgrootte (a), door a = ∆ y : ∆ x.
Stap 4      Noteer de beginwaarde (b), dit is het snijpunt                    met de verticale as (y-as). 
Stap 5     Noteer de lineaire formule, door a en b in te                      vullen.

   


delta (∆), dit teken gebruiken we in de wiskunde voor het woord verschil.
Voorbeeld lineaire formule opstellen.
x
0
8
y
14
8

Slide 20 - Diapositive





We stellen een formule op voor de groen grafiek.
De grafiek is een rechte lijn, dus we hebben te maken met een lineaire formule.

Standaardvorm: y= ax +b

Stapgrootte berekenen.
a = ∆ y : ∆ x.
a = -6 : 8 = -¾

De grafiek loopt door (0, 14) , dus b= 14

Dus de formule bij de groene grafiek is y= x +14










Stap 1       Noteer de standaardvorm y = a x + b 
Stap 2      Zoek twee roosterpunten en noteer deze in een                tabel.
Stap 3      Bereken de stapgrootte (a), door a = ∆ y : ∆ x.

Stap 4      Noteer de beginwaarde (b), dit is het snijpunt                    met de verticale as (y-as). 
Stap 5     Noteer de lineaire formule, door a en b in te                      vullen.

   


delta (∆), dit teken gebruiken we in de wiskunde voor het woord verschil.
Voorbeeld lineaire formule opstellen.
x
0
8
y
14
8

Slide 21 - Diapositive





We stellen een formule op voor de groen grafiek.
De grafiek is een rechte lijn, dus we hebben te maken met een lineaire formule.

Standaardvorm: y= ax +b

Stapgrootte berekenen.
a = ∆ y : ∆ x.
a = -6 : 8 = -¾

De grafiek loopt door (0, 14) , dus b= 14

Dus de formule bij de groene grafiek is y= x +14










Stap 1       Noteer de standaardvorm y = a x + b 
Stap 2      Zoek twee roosterpunten en noteer deze in een                tabel.
Stap 3      Bereken de stapgrootte (a), door a = ∆ y : ∆ x.

Stap 4      Noteer de beginwaarde (b), dit is het snijpunt                    met de verticale as (y-as). 
Stap 5     Noteer de lineaire formule, door a en b in te                      vullen.

   


delta (∆), dit teken gebruiken we in de wiskunde voor het woord verschil.
Voorbeeld lineaire formule opstellen.
x
0
8
y
14
8

Slide 22 - Diapositive





We stellen een formule op voor de groen grafiek.
De grafiek is een rechte lijn, dus we hebben te maken met een lineaire formule.

Standaardvorm: y= ax +b

Stapgrootte berekenen.
a = ∆ y : ∆ x.
a = -6 : 8 = -¾

De grafiek loopt door (0, 14) , dus b= 14

Dus de formule bij de groene grafiek is y= x +14










Stap 1       Noteer de standaardvorm y = a x + b 
Stap 2      Zoek twee roosterpunten en noteer deze in een                tabel.
Stap 3      Bereken de stapgrootte (a), door a = ∆ y : ∆ x.
Stap 4      Noteer de beginwaarde (b), dit is het snijpunt                    met de verticale as (y-as). 
Stap 5     Noteer de lineaire formule, door a en b in te                      vullen.

   


delta (∆), dit teken gebruiken we in de wiskunde voor het woord verschil.
Voorbeeld lineaire formule opstellen.
x
0
8
y
14
8

Slide 23 - Diapositive


timer
1:00

Slide 24 - Question ouverte


Schrijf de volgende formule korter.
r = 9v³ -7v + v³
Maak de opgave eerst in je schrift en upload een foto.

timer
1:00

Slide 25 - Question ouverte

Wat moet je kennen en kunnen 
om een formules korter te schrijven met 
termen, factoren en kwadraten erin.

Slide 26 - Carte mentale

Aan de slag
Zelfstandig aan het werk thuis  

Heb je leerdoel 1 en 2 volledig doorlopen?
Kijk je werk goed na en verbeter je fouten!
Heb je al je opgaven en aantekeningen zichtbaar gemaakt voor mij?
Dit doe je door ze te uploaden bij de fotovraag schrift controle.
Heb je vragen? Stel deze dan via de teams chat aan mij.
Succes, je mag nu teams afsluiten en aan de slag gaan met de gedeelde lessen!

Start met leerdoel 3

Slide 27 - Diapositive

De mooiste fout!

Slide 28 - Diapositive


De mooiste fout!
Lever hieronder je uitwerking in!

Slide 29 - Question ouverte


Ik wil nog graag uitleg over .....

Slide 30 - Question ouverte

Slide 31 - Diapositive


De mooiste fout!
Lever hieronder je uitwerking in!

Slide 32 - Question ouverte