Uitlegles leerdoel 3

H1 Lineaire formules




Ga rustig zitten op je plek.
Leg je wiskundespullen open op tafel.
Leg je iPad omgedraaid op tafel neer.

1 / 16
suivant
Slide 1: Diapositive
WiskundeMiddelbare schoolhavo, vwoLeerjaar 3

Cette leçon contient 16 diapositives, avec quiz interactifs et diapositives de texte.

time-iconLa durée de la leçon est: 50 min

Éléments de cette leçon

H1 Lineaire formules




Ga rustig zitten op je plek.
Leg je wiskundespullen open op tafel.
Leg je iPad omgedraaid op tafel neer.

Slide 1 - Diapositive

Opbouw les 
  • Start
  • Vragen
  • Uitleg
  • Aan de slag
  • Afsluiten

Slide 2 - Diapositive

Welke vragen heb je over het huiswerk? 
Noteer alleen het opgave nummer.

Slide 3 - Carte mentale



Het maken van aantekeningen is niet verplicht, maar wel aan te raden.

Het is wel verplicht om aantekeningen te maken van de gedeelde lessen.






 

Slide 4 - Diapositive

Ik kan een formule opstellen bij een lijn die het verband geeft tussen x en y.

Slide 5 - Carte mentale

Ik kan een formule opstellen bij een lijn die het verband geeft tussen x en y.
Succescriteria

Ik ken de algemene vorm van een lineaire formule.
Ik kan een lineaire formule opstellen aan de hand van een gegeven tabel.
Ik kan een lineaire formule opstellen aan de hand van een gegeven grafiek.
Ik kan het startgetal aflezen uit een tabel, grafik
Ik kan aan een lineaire formule zien welke grafiek hierbij hoort.

Slide 6 - Diapositive

Een lineaire formule opstellen.
Stap 1       Noteer de standaardvorm y = a x + b 
Stap 2      Zoek twee roosterpunten en noteer deze in een tabel.
Stap 3      Bereken de hellingsgetal of stapgrootte (a), 
               dit kun je doen door a = ∆ y : ∆ x.
Stap 4      Noteer de startgetal of beginwaarde (b)
               dit is het snijpunt met de verticale as (y-as). 
Stap 5      Noteer de lineaire formule, door a en b in te vullen.

   


delta (∆), dit teken gebruiken we in de wiskunde voor het woord verschil.

Slide 7 - Diapositive





We stellen een formule op voor de groen grafiek.
De grafiek is een rechte lijn, dus we hebben te maken met een lineaire formule.

Standaardvorm: y= a x +b









Stap 1       Noteer de standaardvorm y = a x + b 

   


delta (∆), dit teken gebruiken we in de wiskunde voor het woord verschil.
Voorbeeld lineaire formule opstellen.

Slide 8 - Diapositive





We stellen een formule op voor de groen grafiek.
De grafiek is een rechte lijn, dus we hebben te maken met een lineaire formule.

Standaardvorm: y= x +b












Stap 1       Noteer de standaardvorm y = a x + b 
Stap 2      Zoek twee roosterpunten en noteer deze in een                tabel.
   


delta (∆), dit teken gebruiken we in de wiskunde voor het woord verschil.
Voorbeeld lineaire formule opstellen.
x
0
8
y
14
8

Slide 9 - Diapositive





We stellen een formule op voor de groen grafiek.
De grafiek is een rechte lijn, dus we hebben te maken met een lineaire formule.

Standaardvorm: y= ax +b

Stapgrootte berekenen.
a = ∆ y : ∆ x.
a = -6 : 8 = -¾










Stap 1       Noteer de standaardvorm y = a x + b 
Stap 2      Zoek twee roosterpunten en noteer deze in een                tabel.
Stap 3      Bereken de stapgrootte (a), door a = ∆ y : ∆ x.

   


delta (∆), dit teken gebruiken we in de wiskunde voor het woord verschil.
Voorbeeld lineaire formule opstellen.
x
0
8
y
14
8

Slide 10 - Diapositive





We stellen een formule op voor de groen grafiek.
De grafiek is een rechte lijn, dus we hebben te maken met een lineaire formule.

Standaardvorm: y= ax +b

Stapgrootte berekenen.
a = ∆ y : ∆ x.
a = -6 : 8 = -¾

De grafiek loopt door (0, 14) , dus b= 14











Stap 1       Noteer de standaardvorm y = a x + b 
Stap 2      Zoek twee roosterpunten en noteer deze in een                tabel.
Stap 3      Bereken de stapgrootte (a), door a = ∆ y : ∆ x.

Stap 4      Noteer de beginwaarde (b), dit is het snijpunt                    met de verticale as (y-as). 


   


delta (∆), dit teken gebruiken we in de wiskunde voor het woord verschil.
Voorbeeld lineaire formule opstellen.
x
0
8
y
14
8

Slide 11 - Diapositive





We stellen een formule op voor de groen grafiek.
De grafiek is een rechte lijn, dus we hebben te maken met een lineaire formule.

Standaardvorm: y= ax +b

Stapgrootte berekenen.
a = ∆ y : ∆ x.
a = -6 : 8 = -¾

De grafiek loopt door (0, 14) , dus b= 14

Dus de formule bij de groene grafiek is y= x +14










Stap 1       Noteer de standaardvorm y = a x + b 
Stap 2      Zoek twee roosterpunten en noteer deze in een                tabel.
Stap 3      Bereken de stapgrootte (a), door a = ∆ y : ∆ x.
Stap 4      Noteer de beginwaarde (b), dit is het snijpunt                    met de verticale as (y-as). 
Stap 5     Noteer de lineaire formule, door a en b in te                      vullen.

   


delta (∆), dit teken gebruiken we in de wiskunde voor het woord verschil.
Voorbeeld lineaire formule opstellen.
x
0
8
y
14
8

Slide 12 - Diapositive

Aan de slag
De leerdoelen 1, 2 en 3 moeten voor maandag af zijn.
Zorg dat je na elk leerdoel je werk goed controleert.


Slide 13 - Diapositive

Hoe was je inzet?
😒🙁😐🙂😃

Slide 14 - Sondage

Aan de slag
Noteer eerst de aantekeningen in je schrift.

Maak
opgaven: 10, 11, 13, 15, 16
Je mag altijd meer maken:   ondersteuning: O11, O13      uitdaging: U1, U2

Controleer je werk kritisch met behulp van de uitwerkingen via magister leermiddelen.
Snap je wat je fout gedaan hebt? Verbeter je fouten met een andere kleur. 
Wie kan je om hulp vragen als je het niet begrijpt?
Let ook op je notatie!

Lever in je nagekeken uitwerkingen van opgave 13 via de volgende slide
timer
15:00

Slide 15 - Diapositive

Begrippen voorkennis

Lineair verband
Lineaire formule
Hellingsgetal
Startgetal
Uitgedrukt in
exponentieel
groeifactor


Slide 16 - Diapositive