quiz H1 en H2

Quiz...
1 / 19
suivant
Slide 1: Diapositive
WiskundeMiddelbare schoolhavoLeerjaar 4

Cette leçon contient 19 diapositives, avec quiz interactifs et diapositives de texte.

time-iconLa durée de la leçon est: 60 min

Éléments de cette leçon

Quiz...

Slide 1 - Diapositive

H1

Slide 2 - Diapositive

Bij welke van de grafieken hoort de formule y=-2x+4?
timer
1:00
A
de groene grafiek
B
de rode grafiek
C
de blauwe grafiek
D
de paarse grafiek

Slide 3 - Quiz

Welke stelling hoort niet bij de volgende
functies: f:y=0,5x+3 en g:y=0,5x+2?
timer
1:00
A
Deze grafieken lopen evenwijdig
B
De richtingscoëfficiënt van de grafiek bij f is 0,5
C
Het snijpunt met de y-as van de grafiek bij g is (0,2)
D
het snijpunt met de y-as van de grafiek bij f is (3,0)

Slide 4 - Quiz

De lijn k gaat door de punten A(2,22) en B(12,7) en de lijn l gaat door de punten C(4,3) en D(20,43).
Stel van de lijnen k en l de formule op en bereken de coördinaten van het snijpunt S van de lijnen k en l.
timer
10:00

Slide 5 - Question ouverte

Opstellen formules voor de lijnen k en l
y=ax+b


door A (2,22) geeft
22=-1,5*2+b
b=25
k:y=-1,5x+25


y=ax+b


door C(4,3) geeft
3=2,5*4+b
b=-7
l:y=2,5x-7
a=122722=1015=23=121
a=204433=1640=410=221

Slide 6 - Diapositive

Berekenen snijpunt van de lijnen k en l
-1,5x+25=2,5x-7
-4x=-32
x=8
y=2,5*8-7=13
snijpunt S (8,13)

Slide 7 - Diapositive


{
Gegeven:      4x + y = 13   Geef de oplossing van dit
                        x  - 2y = 1      stelsel in de vorm (x,y)
                                               vb antwoord: (4,3)
timer
5:00

Slide 8 - Question ouverte

Uitwerking
     4x+ y = 13          *2                8x  + 2y =26
        x- 2y=1                                     x - 2y=1
Als je beide vergelijkingen bij elkaar optelt, houd je over:
9x=27, dus x=3
invullen in de tweede vergelijking geeft:
3-2y=1
-2y=-2, dus y=1. De oplossing van het stelsel: (3,1)
{
{

Slide 9 - Diapositive

Gegeven:
Gevraagd: de grafiek van f heeft 2 nulpunten, bereken
met de GR het rechternulpunt. Rond af op 2 decimalen vb: 2,36
f(x)=3x2+2x4
timer
3:00

Slide 10 - Question ouverte

H2

Slide 11 - Diapositive

Wat voor soort stijgen/dalen is er op het interval
vb: afnemende daling
2,3
timer
1:00

Slide 12 - Question ouverte

Gegeven: de grafiek hiernaast
Gevraagd: de hellinggrafiek
timer
1:00
A
B
C

Slide 13 - Quiz


Gegeven: f(x)=
Bereken het differentiequotiënt van f(x) op [-2,3].
Geef je antwoord als kommagetal.
121x2+5x+4
timer
5:00

Slide 14 - Question ouverte

Gegeven:
Hierin is s de afgelegde afstand in meter na t seconden.
Benader de snelheid op t=5 in m/s. Neem
en rond af op 2 decimalen. Bijvoorbeeld: 0,66m/s
s=1+(4t+1)
Δt=0,01
timer
5:00

Slide 15 - Question ouverte

Slide 16 - Diapositive

Gegeven:

De bijbehorende grafiek snijdt de y-as in punt A.
Stel de formule op van de lijn k die de grafiek raakt in A.
y=x2+2(3x6)
timer
5:00

Slide 17 - Question ouverte

Slide 18 - Diapositive

Bereken de afgeleide van:

Voorbeeldantwoord: f'(x)=3x+5

f(x)=(3x1)(2x+2)
timer
3:00

Slide 19 - Question ouverte