kwadratische vergelijkingen en ongelijkheden

Kwadratische vergelijkingen
 en ongelijkheden
1 / 24
suivant
Slide 1: Diapositive
WiskundeMiddelbare schoolhavoLeerjaar 3

Cette leçon contient 24 diapositives, avec quiz interactifs et diapositives de texte.

time-iconLa durée de la leçon est: 60 min

Éléments de cette leçon

Kwadratische vergelijkingen
 en ongelijkheden

Slide 1 - Diapositive

In deze les leer je...
...hoe je kwadratische vergelijkingen met de abc- formule 
op kan lossen
...wat de discriminant van een kwadratische vergelijking is
...wat een interval is
...hoe je oplossingen van ongelijkheden uit een grafiek afleest
...kwadratische ongelijkheden oplossen met grafieken

Slide 2 - Diapositive

Weet je nog:
f(x)=x2+2x15
f(0)=02+2015=15
f(x)=x2+2x15=0
(x+5)(x3)=0
x=5x=3
snijpunt y-as: (0,-15)
snijpunten x-as: (-5,0) en (3,0)
snijpunt y-as: x=0
snijpunten x-as: y=0

Slide 3 - Diapositive

abc-formule
ax2+bx+c=0
Je kan niet alle kwadratische vergelijkingen op deze manier oplossen, daarom abc-formule
D=b24ac
x=2ab+D
x=2abD
en

Slide 4 - Diapositive

abc-formule
3x27x+2=0
Stappen:
D=b24ac
x=2ab+D
x=2abD
en
a=3, b=-7, c=2
D=(7)2432
D=4924=25
schrijf a, b en c op
1
reken D uit
2
x=237+25
en
x=23725
x=612=2
en
x=62=31
reken x uit
3

Slide 5 - Diapositive

abc-formule
7x25x2=0
schrijf a, b en c op
1
reken D uit
2
reken x uit
3

Slide 6 - Diapositive

abc-formule
7x25x2=0
schrijf a, b en c op
1
reken D uit
2
reken x uit
3
a=7, b=-5, c=-2

Slide 7 - Diapositive

abc-formule
7x25x2=0
D=b24ac
a=7, b=-5, c=-2
D=(5)2472
D=2556=81
schrijf a, b en c op
1
reken D uit
2
reken x uit
3

Slide 8 - Diapositive

abc-formule
7x25x2=0
D=b24ac
x=2ab+D
x=2abD
en
a=7, b=-5, c=-2
D=(5)2472
D=2556=81
schrijf a, b en c op
1
reken D uit
2
x=275+81
en
x=27581
x=1414=1
en
x=144=72
reken x uit
3

Slide 9 - Diapositive

abc-formule
x2+x5=0
D=b24ac
x=2ab+D
x=2abD
en
a=1, b=1, c=-5
D=12415
D=120=21
schrijf a, b en c op
1
reken D uit
2
x=211+21
en
x=21121
x=1,791...
en
x=2,791...
reken x uit
3
als D geen 'mooie' wortel is
x1,79
en
x2,79

Slide 10 - Diapositive

Aantal oplossingen

Als D>0 dan zijn er twee oplossingen
Als D=0 dan is er één oplossing
Als D<0, zijn er geen oplossingen
want als D negatief is, staat er een negatief getal onder de wortel

Slide 11 - Diapositive

Kwadratische vergelijkingen oplossen
1: 

2:ontbinden in factoren

3: abc-formule
x2=c

Slide 12 - Diapositive

Kwadratische vergelijkingen oplossen
1: 

2:ontbinden in factoren

3: abc-formule
x2=c
x2=49
x=7x=7

Slide 13 - Diapositive

Kwadratische vergelijkingen oplossen
1: 

2:ontbinden in factoren

3: abc-formule
x2=c
x2+8x=0
x(x+8)=0
x=0x=8
x28x+12=0
(x2)(x6)=0
x=2x=6
(2x4)(3x+6)=0
2x4=03x+6=0
x=2x=2

Slide 14 - Diapositive

Kwadratische vergelijkingen oplossen
1: 

2:ontbinden in factoren

3: abc-formule                           alleen als de andere opties niet                                                                     kunnen
x2=c

Slide 15 - Diapositive

Kwadratische vergelijkingen opstellen
oppI=4×12=48
12
x
4
x
I
II
III
IV
oppII=12x
oppIII=4x
oppIV=x2
opptotaal=x2+16x+48

Slide 16 - Diapositive

Kwadratische vergelijkingen opstellen
12
x
4
x
I
II
III
IV
II+III+IV=57
hoe groot is x?

Slide 17 - Diapositive

Kwadratische vergelijkingen opstellen
12
x
4
x
I
II
III
IV
x2+16x=57
II+III+IV=57
hoe groot is x?
x2+16x57=0
(x+19)(x3)=0
x=19x=3
x=-19 kan niet dus x=3

Slide 18 - Diapositive

Ongelijkheden en grafieken
2<x<4
x<2x>4
open bolletje betekent dat getal niet bij het interval hoort
één interval dan één x in het antwoord, twee intervallen dan twee x-en in het antwoord

Slide 19 - Diapositive

Ongelijkheden en grafieken
f(x)<g(x)
f(x)>g(x)
2<x<5
x<2x>5

Slide 20 - Diapositive

Kwadratische ongelijkheden
losop:f(x)<g(x)
(x+2)(x3)=0
x2x6=0
x25<x+1
x25=x+1
vergelijking oplossen
1
x=2x=3
oplossing aflezen
2
antwoord
3
f(x)<g(x)geeft2<x<3

Slide 21 - Diapositive

In deze les heb je geleerd...
...hoe je kwadratische vergelijkingen met de abc- formule 
op kan lossen
...wat de discriminant van een kwadratische vergelijking is
...wat een interval is
...hoe je oplossingen van ongelijkheden uit een grafiek afleest
...kwadratische ongelijkheden oplossen met grafieken

Slide 22 - Diapositive

Wat heb je deze les geleerd?

Slide 23 - Question ouverte

Wat snap je nog niet zo goed?

Slide 24 - Question ouverte