H3 Grafieken herhaling Coördinaten + Grafieken lezen + maken

H3 Grafieken
1 / 31
suivant
Slide 1: Diapositive
WiskundeMiddelbare schoolmavoLeerjaar 1

Cette leçon contient 31 diapositives, avec quiz interactifs et diapositives de texte.

time-iconLa durée de la leçon est: 150 min

Éléments de cette leçon

H3 Grafieken

Slide 1 - Diapositive

Programma
  • Herhaling Coördinaten
  • Geheimtaal
  • Grafieken aflezen
  • Grafieken tekenen
  • Proefwerk bespreken

Slide 2 - Diapositive

Coördinaten
Leerdoelen:
  1.   Je weet wat een assenstelsel is
  2.  Je weet wat een horizontale as en verticale as is 
  3. Je weet hoe je een coördinaat schrijft
  4.  Je weet hoe je een coördinaat in een assenstelsel kan vinden
  5.  Je weet wat roosterpunten zijn
  6.  Je weet welke coördinaat bij de oorsprong hoort
  7.  Je kan de oorsprong vinden in een assenstelsel

(51.9098577,6.3831256)

Slide 3 - Diapositive

Slide 4 - Carte

Coördinaten
Een coördinaat is bijvoorbeeld (1,2). 
ga dan 1 naar rechts en 2 naar boven.

Je begint bij (0,0) dit heet de oorsprong.

Beginpunt
Je begint altijd bij (0,0). Dit zijn de twee kruissende lijnen van je horizontale en verticale as 
Ezelsbruggetje!
Je zoekt eerst het juiste gebouw (horizontaal) en stapt dan in de lift naar boven (verticaal)

Slide 5 - Diapositive

Coördinaten
Speciale coördinaten zijn coördinaten die decimale getallen hebben. Bijvoorbeeld het getal anderhalf (1,5). Als je naar het punt 
(1,5, 1,5) wilt gaan  kunnen al die komma's verwarend zijn. Daarom wordt bij decimale getalen een puntkomma achter het getal gebruikt. (1,5;1,5) is de juiste notatie

Wat zijn de coördinaten van het groene punt?
Beginpunt
Je begint altijd bij (0,0). Dit zijn de twee kruissende lijnen van je horizontale en verticale as 

Slide 6 - Diapositive


Geheim
taal

Schrijf
je naam
in coör-dinaten


Slide 7 - Diapositive

Grafiek lezen
Je krijgt enorm veel informatie uit een grafiek. 

Klasikaal:
Wat kunnen jullie allemaal vertellen over deze grafiek? 

Slide 8 - Diapositive

Grafieken aflezen
  1. Je moet uit een grafiek kunnen aflezen wat je met elkaar vergelijkt. Dit noem je het verband.
  2. Je moet weten of een grafiek stijgt, daalt of constant is.
  3. Je moet kunnen aflezen welke waarde de grafiek is op een willekeurig punt. bv: bij 10 jaar.

Slide 9 - Diapositive

Hoe oud ben je als je €2,50 zakgeld per week krijgt?
A
9
B
10
C
11
D
12

Slide 10 - Quiz

Verbanden
Een grafiek heeft altijd een verband. Dat is hetgeen wat je met elkaar vergelijkt. Dit kan je zien door te kijken naar de twee assen. 

In dit voorbeeld is het verband: de gemiddelde hoeveelheid zakgeld die kinderen per week krijgen bij verschillend leeftijden.

Slide 11 - Diapositive

Grootheden / eenheden
Hetgeen wat je meet per as is de grootheid. voorbeelden van grootheden zijn tijd, temperatuur, geldbedrag, gewicht, leeftijd, etc
Hetgeen waarin je meet noem je de eenheid. voorbeelden van eenheden zijn. €, $, seconden, dagen, jaren, kilogram, grammen, tonnen, graden celcius., etc.
Belangrijk: De assen op een grafiek hebben altijd een grootheid en eenheid!

Slide 12 - Diapositive

Wat is hier het verband?
Wat zijn de grootheden?
Wat zijn de eenheden?

Slide 13 - Question ouverte

Wanneer is er pauze genomen. Hoe kan je dat zien?

Slide 14 - Question ouverte

Hoeveel kilometer is er gelopen na 2 uur?

Slide 15 - Question ouverte

Maar hoe maak je nu een grafiek?
  1. Je moet hiervoor goed tabellen kunnen lezen en gebruiken of
  2. Je moet hiervoor Coördinaten kunnen gebruiken of
  3. Je moet een formule kunnen gebruiken voor het krijgen van de getallen
    &
  4. Je moet op de juiste manier de grafiek kunnen tekenen

Slide 16 - Diapositive

------------ Horizontaal ------------

Slide 17 - Diapositive

Assenstelsel maken

Slide 18 - Diapositive

Assenstelsel
Belangrijk bij het maken van een assenstelsel.

  1.  Het kruispunt van de horizontale en verticale as is altijd de oorsprong met coördinaat (0,0)
  2. Zet bij de assen neer wat het is. (horizontale of verticale as)
  3. Gebruik per as altijd dezelfde stapgrootte per stap (vaak 1)

TIP: Bepaal de grootte van je assenstelsel via de grootste waarde

Slide 19 - Diapositive

Slide 20 - Diapositive

Huiswerk
Paragraaf 3-3 Grafieken aflezen
Opgave 16, 17, 18
Paragraaf 3-4 Grafieken tekenen 
Opgave 21, 22

Slide 21 - Diapositive

Volgende slides zijn
voor extra uitleg / herhaling

Slide 22 - Diapositive

Slide 23 - Diapositive

Zet op de juiste plek
Oorsprong
Sleep dit Icoon naar de oorsprong
(4,6)
Verticale as
(3,5;1,5)

Slide 24 - Question de remorquage

Is dit een Coördinaat?
(3,5;2,5)
Zo ja, wat weet je hiervan
A
Nee, dit is niet een coördinaat
B
Ja, deze coördinaat zit op een roosterpunt
C
Ja, deze coördinaat zit niet op een roosterpunt
D
Ja, deze coördinaat zit op de oorsprong

Slide 25 - Quiz

Waar staat het coördinaat
(1,5,5) ?
E
F
A
Nergens, deze coördinaat is fout geschreven
B
Op positie E
C
Op positie F
D
Zowel positie E als F zijn goed

Slide 26 - Quiz

Zoek de code
Lijn 1 - (4,3) (4,2) (8,2) (8;2,5) (9,5;3) (10,5;3) (12;2,5) (12,2)
Lijn 2 - (4;4,5) (8,4) (8,5) (8;4,75) (5,5;4,75) (12;4,75)
Lijn 3 - (6;5,5) (4,6) (12,6)
Lijn 4 - (6;6,5) (4,7) (12,7)

Slide 27 - Diapositive

Coördinaten 
Coördinaten is een slimme notatie van getalen waarbij je makkelijk kan aflezen waar een punt zich begeeft op een grafiek of kaart. 

Je zet Coördinaten altijd tussen haakjes!

Slide 28 - Diapositive

Coördinaten
Een coördinaat is bijvoorbeeld (1,2). Om dit coördinaat op een assen-stelsel te tekenen ga je het eerste getal (1) aantal hokjes naar rechts en dan na de komma (,) het tweede getal (2) aantal hokjes naar boven 
Beginpunt
Je begint altijd bij (0,0). Dit zijn de twee kruissende lijnen van je horizontale en verticale as 
Ezelsbruggetje!
Je zoekt eerst het juiste gebouw (horizontaal) en stapt dan in de lift naar boven (verticaal)

Slide 29 - Diapositive

Welke Coördinaten hebben punt A, B, C, D?
x - as
Dit is de horizontale as. Deze gaat altijd van links naar rechts
(0,0)
Het Coördinaat (0,0) is een bijzonder Coördinaat. Deze bevind zich namelijk op de plekken waar de horizontale en verticale as elkaar kruissen. Je gaat immers 0 naar rechts en 0 naar boven. 

Deze locatie noem je de oorsprong 
y- as
Dit is de verticale as. Deze gaat altijd van onder naar boven
Assenstelsel
Hiernaast zie je een assenstelsel.
Een assenstelsel heeft altijd een horizontale en een verticale as.
Op de assen staan altijd getallen 
Roosterpunten
Een plek waar de getallen van een assenstelsel mooi samen vallen noem je roosterpunten. Dit is altijd bij hele getallen.  Soms zitten coördinaten mooi op roosterpunten maar soms ook niet.
(4,3)
Dit is het Coördinaat (4,3). Om dit Coördinaat te vinden ga je 4 stappen vanuit (0,0) naar rechts en drie stappen omhoog.

Slide 30 - Diapositive

Grafiek tekenen
Voordat je een grafiek tekent moet je eerst leren hoe je een assenstelsel op de juiste manier maakt. Pas daarna kan je de getallen invoegen om een grafiek te maken.

Slide 31 - Diapositive