H11: Hypothesetoetsen

Hypothesetoetsen
1 / 49
suivant
Slide 1: Diapositive
WiskundeMiddelbare schoolvwoLeerjaar 5

Cette leçon contient 49 diapositives, avec quiz interactif et diapositives de texte.

time-iconLa durée de la leçon est: 60 min

Éléments de cette leçon

Hypothesetoetsen

Slide 1 - Diapositive

Waar gaat dit hoofdstuk over

Het gebruiken van normale en binomiale kansen om iets te zeggen over een voorspelling of verwachting

Slide 2 - Diapositive

Wat ga je leren vandaag?

Je kunt de normaalverdeling en binomiale kansverdeling combineren.

Slide 3 - Diapositive

Bijvoorbeeld
Een machine vult pakken hagelslag waarvan het gewicht normaal verdeeld is met een gemiddelde van 260 gram en een standaardafwijking van 8 gram. Bereken de kans dat in een steekproef van 25 pakken er minstens 4 minder dan 250 gram wegen. 

Slide 4 - Diapositive

Zelf aan de slag

Alle routes maken vraag 2 en 3

Slide 5 - Diapositive

De som van (n) normaal verdeelde toevalsvariabelen

Slide 6 - Diapositive

Wat ga je leren vandaag?

Je kunt het gemiddelde en de standaardafwijking berekenen van meerdere toevalsvariabelen.

Slide 7 - Diapositive

Wat denk je?
Maartje, Nora en Bo lopen over de markt langs een groentekraam. De groenteboer verkoopt appels met een gemiddeld gewicht van 64 gram en een standaardafwijking van 3 gram en peren met een gemiddeld gewicht van 72 gram en een standaardafwijking van 2,4 gram. 

Maartje, Nora en Bo kopen alle drie een appel en een peer. Wat is het gemiddelde gewicht aan fruit per persoon denk je? Wat zou de standaardafwijking nu zijn?

Slide 8 - Diapositive

Afspraak
μs=μx+μy
σs=(σx)2+(σy)2

Slide 9 - Diapositive

Zelf aan de slag

Alle routes maken vraag 6, 7, 9, 10

Slide 10 - Diapositive

Steekproefgemiddelde en steekproef van lengte n

Slide 11 - Diapositive

Wat ga je leren vandaag?
Je kunt de wortel-n wet gebruiken bij een steekproef van meerdere items.

Je kunt de wortel-n wet gebruiken bij een meting uit een steekproef.

Slide 12 - Diapositive

Even ophalen
Een groenteboer verkoopt appels met een gemiddelde van 64 gram en een standaardafwijking van 3 gram. Een tas van 5 appels geeft:






μ=564=320
σ=32+32+32+32+32=532=532=53

Slide 13 - Diapositive

Algemeen
Bij het combineren van n items uit een normaal verdeelde verzameling geldt:




μs=μxn
σs=σxn

Slide 14 - Diapositive

Wat is het verschil tussen deze 2 vragen:
Een groenteboer verkoopt appels met een gemiddelde van 64 gram en een standaardafwijking van 3 gram. Wat is de kans dat een tas van 5 appels meer dan 330 gram weegt?

Een groenteboer verkoopt appels met een gemiddelde van 64 gram en een standaardafwijking van 3 gram. Roos pakt een appel uit een tas van 5. Wat is de kans dat deze appel minder dan 60 gram weegt?

Slide 15 - Diapositive

De wortel-n wet
Voor een steekproef: 



Voor een item uit een 
steekproef: 
μs=μxn
σs=σxn
μs=μx
σs=nσx

Slide 16 - Diapositive

Een voorbeeldvraag
Bij Leonidas kun je bakjes bonbons samenstellen. Een bonbon weegt gemiddeld 37 gram met een standaardafwijking van 5 gram. 

a) Wat is de kans dat een doosje van 10 bonbons minder dan 350 gram weegt?

b) Wat is de kans dat een bonbon uit zo'n doosje meer dan 40 gram weegt?

Slide 17 - Diapositive

Zelf aan de slag
Basis: 13, 14, 19, 20, 21 


Midden: 15, 16, 20, 21, 22


Uitdagend: 16, 17, 21, 22, 23

Slide 18 - Diapositive

Beslissingsvoorschrift

Slide 19 - Diapositive

Wat ga je leren vandaag?
 Je weet wat een beslissingsvoorschrift is.

Je weet wat een vals positief of negatief is en hoe je de kans daarop berekent.

Slide 20 - Diapositive

Beslissingsvoorschrift
Bij vwo 5 wordt een rekentoets afgenomen. Leerlingen die hier slecht op scoren, krijgen extra rekenles. Er kunnen zich dan 4 situaties voordoen:





Beslissingsvoorschrift: bij welke score krijgt een leerling extra rekenles?
Goed in rekenen
Niet goed in rekenen
Hoge score 
ok
vals negatief
Lage score
vals positief
ok

Slide 21 - Diapositive

Bijvoorbeeld
In de fabriek van Lipton worden flesjes ijsthee gevuld door een vulmachine. De vulmachine is afgesteld op een gemiddelde van 400 mL en heeft een standaardafwijking van 4 mL. De ervaring leert dat de machine na verloop van tijd niet goed meer vult, dus Lipton neemt regelmatig een steekproef van 25 flessen. Het beslissingsvoorschrift is dat er wordt bijgesteld als het gemiddelde onder de 398 of boven de 402 ligt. Wat is de kans dat de machine onterecht wordt bijgesteld?

Slide 22 - Diapositive

Zelf aan de slag

Iedereen maakt 26, 27


Slide 23 - Diapositive

Nulhypothese en significantieniveau

Slide 24 - Diapositive

Wat ga je leren vandaag?
Je weet wat een nulhypothese en een alternatieve hypothese is.

Je weet wat een significantieniveau is en waar het voor gebruikt wordt.

Slide 25 - Diapositive

H0 / H1 en significatieniveau
Terug naar de flessen van Lipton met een gemiddelde van 400 mL en een standaardafwijking van 4 mL en een steekproef van 25 flessen. 

Nulhypothese en alternatieve hypothese:

Significantieniveau: 

Wat wordt het beslissingsvoorschrift bij een significantieniveau van 10%

Slide 26 - Diapositive

Zelf aan de slag

Iedereen maakt 28, 29




Slide 27 - Diapositive

Overschrijdingskans

Slide 28 - Diapositive

Wat ga je leren vandaag?
Wat een overschrijdingskans is

Hoe je een overschrijdingskans gebruikt om een beslissing te nemen

Slide 29 - Diapositive

Overschrijdingskans
In een bedrijf is de totale tijd in uren die per dag wordt overgewerkt normaal verdeeld met een gemiddelde van 9,3 uur en een standaardafwijking van 2.1 uur. Sinds kort is een systeem van flexibele werktijden ingevoerd. In een periode van 40 werkdagen bleek de gemiddelde overwerktijd 8,6 uur per dag te zijn. Onderzoek of bij een significantieniveau van 1% geconcludeerd kan worden dat het nieuwe systeem invloed heeft op de overwerktijd.

Slide 30 - Diapositive

Zelf aan de slag

Iedereen maakt 33, 34, 35




Slide 31 - Diapositive

Een- en tweezijdig toetsen

Slide 32 - Diapositive

Wat ga je leren vandaag?

Je weet wat het verschil is tussen een- en tweezijdig toetsen.

Je weet hoe je een beslissing moet nemen bij een eenzijdige danwel tweezijdige toets

Je weet wat een enkelvoudige nulhypothese is

Slide 33 - Diapositive

Eenzijdig toetsen
De afhandelingstijd in minuten van de bestellingen bij de Zara is normaal verdeeld met een gemiddelde van 12 en een standaardafwijking van 3. De directie van de Zara beweert dat door een interne reorganisatie de gemiddelde afhandelingstijd is teruggedrongen.


Formuleer een nulhypothese en alternatieve hypothese. 


Bij welk gemiddelde is er, bij een steekproef van 25 bestellingen en een significantieniveau van 5%, aanleiding om aan te nemen dat de afhandelingstijd inderdaad is afgenomen?

Slide 34 - Diapositive

Enkelvoudige nulhypothese
Een kabelfabrikant beweert dat zijn remkabels voor toerfietsen gemiddeld een trekkracht van minstens 800 newton kunnen weerstaan. De redactie van een fietstijdschrift vindt dit erg optimistisch en neemt een steekproef.

Welke nulhypothese gebruiken ze?

Slide 35 - Diapositive

Zelf aan de slag
Je hebt 2 lessen de tijd voor: 

Iedereen maakt 40 t/m 44, 46, 49, 50 




Slide 36 - Diapositive

Hypothesetoetsen met binomiale kansen

Slide 37 - Diapositive

Wat ga je leren vandaag?


Je kunt overschrijdingskansen berekenen bij eenzijdige binomiale toetsen

Slide 38 - Diapositive

Bijvoorbeeld
Coca cola beweert in een reclame dat 40% van de mensen Coca cola de lekkerste frisdrank vindt. Pepsi vindt dit sterk overdreven en vecht de uitspraak aan. De reclamecommissie neemt een steekproef van 100 mensen en een significantieniveau van 5%. 

Stel dat 28 mensen aangeven dat ze Coca cola inderdaad de lekkerste frisdrank vinden. Moet Coca cola hun advertentie dan herzien?

Slide 39 - Diapositive

Zelf aan de slag
Basis: 54, 55, 56

Midden: 56, 57, 58

Uitdagend: 58, 59, 60
    

Slide 40 - Diapositive

Grenzen bij binomiale kansen

Slide 41 - Diapositive

Wat ga je leren vandaag?


Je kunt grenzen berekenen bij binomiale toetsen.

Slide 42 - Diapositive

Frisdrank
Coca cola beweert in een reclame dat 40% van de Nederlanders hun frisdrank de lekkerste frisdrank ooit vindt. Een concurrent vecht dit aan bij de Reclame Code Commissie. Hij denkt dat dit percentage lager ligt. De RCC neemt een steekproef van 100 personen en een significantieniveau van 5%. 

a) Stel het beslissingsvoorschrift op vanaf welke waarde Coca Cola hun reclame zal moeten herzien.

b) Bij welke grenzen zou Coca Cola hun reclame moeten herzien als de aanvechter had gedacht dat het werkelijke percentage hoger zou liggen?

Slide 43 - Diapositive

Zelf aan de slag

Iedereen maakt 62, 63



    

Slide 44 - Diapositive

Tweezijdig binomiaal hypothesetoetsen

Slide 45 - Diapositive

Wat ga je leren vandaag?


Je kunt overschrijdingskansen berekenen bij tweezijdige binomiale toetsen. 

Slide 46 - Diapositive

Frisdrank deel 2
Coca Cola brengt een nieuwe smaak op de markt waarvan ze denken dat 37% van de mensen dit de lekkerste smaak gaan vinden die ze ooit gemaakt hebben. Om het fiasco met hun eerdere reclame te voorkomen, nemen ze nu zelf een steekproef van 80 flessen om hun statement te onderzoeken. 

Stel het beslissingsvoorschrift op vanaf welke waarden Coca Cola hun percentage moet aanpassen. Ga uit van een significantieniveau van 5%. 

Slide 47 - Diapositive

Zelf aan de slag
Basis: 65, 66, 68

Midden: 66, 68, 69

Uitdagend: 68, 69, 70

Klaar :-)
    

Slide 48 - Diapositive

Exit-vraag:

Wat heb je nog nodig om volgende week met een goed gevoel aan het wiskunde PTA te beginnen?

Slide 49 - Question ouverte