Qu'est-ce que LessonUp
Rechercher
Canaux
Connectez-vous
S'inscrire
‹
Revenir à la recherche
Voorkennis driehoeken, Pythagoras, oefenen...
H5 Pythagoras
Voorkennis ophalen over driehoeken
Uitleg over stelling van pythagoras
Oefenen
1 / 25
suivant
Slide 1:
Diapositive
Wiskunde
Middelbare school
havo
Leerjaar 2
Cette leçon contient
25 diapositives
, avec
quiz interactifs
,
diapositives de texte
et
1 vidéo
.
La durée de la leçon est:
45 min
Commencer la leçon
Partager
Imprimer la leçon
Éléments de cette leçon
H5 Pythagoras
Voorkennis ophalen over driehoeken
Uitleg over stelling van pythagoras
Oefenen
Slide 1 - Diapositive
rechthoekige driehoek
Slide 2 - Diapositive
Welke driehoek is een rechthoekige driehoek?
A
Δ
A
B
C
B
Δ
D
E
F
C
Δ
G
H
I
D
Δ
K
L
M
Slide 3 - Quiz
Rechthoekige driehoek
Slide 4 - Diapositive
rechthoekige driehoek.
Slide 5 - Diapositive
Rechthoek zijdes = korte zijdes
Slide 6 - Diapositive
Rechthoek zijdes = korte zijdes
Slide 7 - Diapositive
Welke zijde is de langste zijde?
A
a
B
b
C
c
Slide 8 - Quiz
Wat is de langste zijde?
A
AB
B
BC
C
AC
D
Er is geen langste zijde
Slide 9 - Quiz
Wat is de langste
zijde?
A
DE
B
EF
C
DF
Slide 10 - Quiz
Wat is de langste zijde?
A
AB
B
BC
C
AC
Slide 11 - Quiz
Alleen bij een
rechthoekige
driehoek
rechte hoek (hoek B)
2 rechthoekszijden (zijden AB en BC)
1 schuine zijde (zijde AC)
de schuine zijde is altijd
de
langste
zijde en ligt
tegenover de rechte hoek
Slide 12 - Diapositive
H4 De stelling van Pythagoras
Slide 13 - Diapositive
Slide 14 - Vidéo
Slide 15 - Diapositive
Slide 16 - Diapositive
Stelling van Pythagoras
a² + b² = c²
Slide 17 - Diapositive
In welke driehoek kun je de stelling van Pythagoras gebruiken
A
In elke driehoek
B
In een gelijkbenige driehoek
C
In een rechthoekige driehoek
D
In een gelijkzijdige driehoek
Slide 18 - Quiz
Wat is de stelling van Pythagoras voor deze driehoek?
A
K
M
2
+
K
L
2
=
M
L
2
B
K
M
2
+
L
M
2
=
K
L
2
C
L
M
2
+
K
M
2
=
K
L
2
D
K
L
2
+
L
M
2
=
K
M
2
Slide 19 - Quiz
Hoe ziet de stelling van Pythagoras eruit bij deze driehoek?
A
K
L
2
+
K
M
2
=
L
M
2
B
L
M
2
+
K
M
2
=
K
L
2
C
L
M
2
+
K
L
2
=
K
M
2
Slide 20 - Quiz
Wat is de lengte van AC?
Slide 21 - Question ouverte
Wat is de lengte van ML?
A
√
9
B
√
4
5
C
45
D
81
Slide 22 - Quiz
Maak nu H5.2 opgave 17 (blz. 15)
timer
5:00
Slide 23 - Diapositive
Huiswerk voor vrijdag
H5.2 opgave
21, 22, 24, 25, 27.
Slide 24 - Diapositive
Wat vond je van deze les?
😒
🙁
😐
🙂
😃
Slide 25 - Sondage
Plus de leçons comme celle-ci
Pythagoras
Septembre 2019
- Leçon avec
25 diapositives
Wiskunde
Middelbare school
vmbo g, t, mavo
Leerjaar 2
Pythagoras
Février 2024
- Leçon avec
20 diapositives
Wiskunde
Middelbare school
havo
Leerjaar 2
Pythagoras
Mai 2024
- Leçon avec
22 diapositives
Wiskunde
Middelbare school
havo
Leerjaar 2
tangens
Avril 2018
- Leçon avec
31 diapositives
Wiskunde
Middelbare school
vmbo g, t
Leerjaar 3,4
Wiskunde portfolio H5 Stelling van Pythagoras
Janvier 2024
- Leçon avec
37 diapositives
Wiskunde
Middelbare school
vmbo k
Leerjaar 2
sinus, cosinus en tangens
Septembre 2019
- Leçon avec
18 diapositives
Wiskunde
Middelbare school
vmbo k, t, mavo
Leerjaar 3,4
B/K2 Stelling van Pythagoras
Janvier 2022
- Leçon avec
29 diapositives
Wiskunde
Middelbare school
vmbo k
Leerjaar 2
Stelling van Pythagoras
Novembre 2016
- Leçon avec
11 diapositives
Wiskunde
Middelbare school
vmbo t
Leerjaar 2