Qu'est-ce que LessonUp
Rechercher
Canaux
Connectez-vous
S'inscrire
‹
Revenir à la recherche
H6.3 Rekenen met de tangens
H4 Voorkennis
3 HAVO
H6 Goniometrie
H6.3 + 6.4
Sin, cos en tan
Leg vast klaar:
laptop, schrift,
rekenmachine,
etui + geodriehoek
1 / 54
suivant
Slide 1:
Diapositive
Wiskunde
Middelbare school
havo
Leerjaar 3
Cette leçon contient
54 diapositives
, avec
quiz interactifs
et
diapositives de texte
.
La durée de la leçon est:
45 min
Commencer la leçon
Partager
Imprimer la leçon
Éléments de cette leçon
H4 Voorkennis
3 HAVO
H6 Goniometrie
H6.3 + 6.4
Sin, cos en tan
Leg vast klaar:
laptop, schrift,
rekenmachine,
etui + geodriehoek
Slide 1 - Diapositive
Leerdoel van deze les:
Je kan met de sinus, cosinus en tangens een hoek berekenen.
Slide 2 - Diapositive
Programma
Startvragen: hellingshoek, hellingsgetal en
hoek berekenen met tangens
Uitleg: sinus en cosinus
Samen: opgave 22 + 23
Zelf: opgave 24 + 25
Slide 3 - Diapositive
Helling
Er zijn 2 manieren om aan te geven hoe groot de helling is:
Hellingshoek in graden
Hellingsgetal
h
e
l
l
i
n
g
s
g
e
t
a
l
=
a
f
s
t
a
n
d
h
o
o
g
t
e
Slide 4 - Diapositive
Hoe groot is de hellingshoek?
Schat of meet met je geodriehoek.
A
1
3
°
B
3
0
°
C
9
0
°
D
1
6
5
°
Slide 5 - Quiz
Helling
Hellingshoek =
1
3
°
Slide 6 - Diapositive
Bereken het hellingsgetal.
h
e
l
l
i
n
g
s
g
e
t
a
l
=
h
o
r
i
z
o
n
t
a
l
e
v
e
r
p
l
a
a
t
s
i
n
g
v
e
r
t
i
c
a
l
e
v
e
r
p
l
a
a
t
s
i
n
g
h
e
l
l
i
n
g
s
g
e
t
a
l
=
h
o
r
i
z
o
n
t
a
l
e
v
e
r
p
l
a
a
t
s
i
n
g
v
e
r
t
i
c
a
l
e
v
e
r
p
l
a
a
t
s
i
n
g
h
e
l
l
i
n
g
s
g
e
t
a
l
=
a
f
s
t
a
n
d
h
o
o
g
t
e
Slide 7 - Question ouverte
Helling
Er zijn 2 manieren om aan te geven hoe groot de helling is:
Hellingshoek =
h
e
l
l
i
n
g
s
g
e
t
a
l
=
4
0
9
=
0
,
2
2
5
1
3
°
Slide 8 - Diapositive
Als je de hellingshoek hebt, dan kan je in één keer het hellingsgetal berekenen.
Daarvoor gebruik je de tangens.
Notatie: tan
h
e
l
l
i
n
g
s
g
e
t
a
l
≈
0
,
2
3
1
3
°
1
3
°
≈
0
,
2
3
hellingshoek =
Slide 9 - Diapositive
tan
∠
P
=
a
a
n
l
i
g
e
n
d
e
r
e
c
h
t
h
o
e
k
s
z
i
j
d
e
o
v
e
r
s
t
a
a
n
d
e
r
e
c
h
t
h
o
e
k
s
z
i
j
d
e
h
e
l
l
i
n
g
s
g
e
t
a
l
=
a
f
s
t
a
n
d
h
o
o
g
t
e
Slide 10 - Diapositive
lange zijde
(altijd tegenover de rechte hoek)
rechthoekszijde
rechthoekszijde
Slide 11 - Diapositive
Wat is de lange
zijde?
A
PQ
B
QR
C
PR
Slide 12 - Quiz
Vanuit ∠ Q, wat is de
overstaande rechthoekszijde?
A
PQ
B
QR
C
PR
Slide 13 - Quiz
Vanuit ∠ Q, wat is de
aanliggende rechthoekszijde?
A
PQ
B
QR
C
PR
Slide 14 - Quiz
Vanuit ∠ P, wat is de
overstaande rechthoekszijde?
A
PQ
B
QR
C
PR
Slide 15 - Quiz
Vanuit ∠ P, wat is de
aanliggende rechthoekszijde?
A
PQ
B
QR
C
PR
Slide 16 - Quiz
Bereken tan
tan
∠
P
=
a
a
n
l
i
g
e
n
d
e
r
e
c
h
t
h
o
e
k
s
z
i
j
d
e
o
v
e
r
s
t
a
a
n
d
e
r
e
c
h
t
h
o
e
k
s
z
i
j
d
e
tan
∠
Q
=
a
a
n
l
i
g
e
n
d
e
r
e
c
h
t
h
o
e
k
s
z
i
j
d
e
o
v
e
r
s
t
a
a
n
d
e
r
e
c
h
t
h
o
e
k
s
z
i
j
d
e
∠
Q
A
3:4 (0,750)
B
4:3 (1,333)
Slide 17 - Quiz
tan
∠
Q
=
Q
R
P
R
=
4
3
=
0
,
7
5
0
∠
Q
=
3
7
°
shift tan 0,750
Als je de tangens van een hoek hebt berekend,
kan je de hoek berekenen met:
shift tan (getal) = hoek
Slide 18 - Diapositive
Bereken
∠
P
=
.
.
.
°
Slide 19 - Question ouverte
tan
∠
P
=
A
O
=
3
4
=
1
,
3
3
3
∠
P
=
5
3
°
shift tan 1,333
Slide 20 - Diapositive
tan
∠
P
=
P
R
Q
R
=
3
4
=
1
,
3
3
3
∠
P
=
5
3
°
∠
P
+
∠
Q
+
∠
R
=
1
8
0
°
Dit mag ook:
∠
P
+
3
7
°
+
9
0
°
=
1
8
0
°
∠
P
=
5
3
°
Slide 21 - Diapositive
Ik weet welke zijden van een driehoek ik moet gebruiken om de tangens van een hoek uit te rekenen.
😒
🙁
😐
🙂
😃
Slide 22 - Sondage
Ik kan de grootte van een hoek berekenen als ik de tangens van die hoek weet.
😒
🙁
😐
🙂
😃
Slide 23 - Sondage
Goniometrische verhoudingen
Slide 24 - Diapositive
Goniometrische verhoudingen
Slide 25 - Diapositive
Goniometrische verhoudingen
Slide 26 - Diapositive
Goniometrische verhoudingen
SOL
CAL
TOA
noteer
Slide 27 - Diapositive
Maak opgave 22a
timer
4:00
Slide 28 - Diapositive
Maak opgave 22a
Slide 29 - Diapositive
Opgave 23
Slide 30 - Diapositive
Opgave 23
S
Slide 31 - Diapositive
Maak opgave 24 en 25 (blz 212)
Slide 32 - Diapositive
Slide 33 - Diapositive
Slide 34 - Diapositive
Slide 35 - Diapositive
H4 Voorkennis
3 HAVO
H6 Goniometrie
H6.3 + 6.4
Sin, cos en tan
Leg vast klaar:
laptop, schrift,
rekenmachine,
etui + geodriehoek
Slide 36 - Diapositive
Leerdoel van deze les:
Je kan met de sinus, cosinus en tangens een hoek berekenen.
Slide 37 - Diapositive
Programma
Startvragen
Maak opgave 26 en 27
Slide 38 - Diapositive
Goniometrische verhoudingen
Slide 39 - Diapositive
Goniometrische verhoudingen
Slide 40 - Diapositive
Goniometrische verhoudingen
Slide 41 - Diapositive
Goniometrische verhoudingen
ezelsbruggetje
SOL
CAL
TOA
S
=
L
O
C
=
L
A
T
=
A
O
aantekening
Slide 42 - Diapositive
Startvraag 1
Noteer in je schrift het ezelsbruggetje voor sinus, cosinus en tangens.
timer
1:00
Slide 43 - Diapositive
Startvraag 1
Bereken
∠
B
schrijf mee
met de uitwerking.
Slide 44 - Diapositive
Startvraag 1
tan
∠
B
=
1
4
2
0
≈
1
,
4
2
9
∠
B
=
5
5
°
shift tan 1,429
Slide 45 - Diapositive
Startvraag 2
Bereken
∠
J
timer
2:00
Slide 46 - Diapositive
Startvraag 2
cos
∠
J
=
2
4
6
=
0
,
2
5
∠
J
=
7
6
°
shift cos 0,25
Slide 47 - Diapositive
Startvraag 2
Bereken
∠
A
timer
2:00
Slide 48 - Diapositive
Startvraag 2
sin
∠
A
=
7
3
≈
0
,
4
2
9
∠
A
=
2
5
°
shift sin 0,429
Slide 49 - Diapositive
Notatie van een hoek
Bereken
is geen goede opdracht.
Waarom niet?
∠
N
Slide 50 - Diapositive
Notatie van een hoek
Drieletternotatie
en
notatie met index en
∠
O
N
P
∠
P
N
M
∠
N
1
∠
N
2
Slide 51 - Diapositive
Programma
Maak opgave 26 en 27
Morgen: huiswerkcontrole opgave 22 t/m 27 (gemaakt en nagekeken in je schrift). Dus huiswerk als je deze opgaven nog niet af hebt.
timer
15:00
Slide 52 - Diapositive
Slide 53 - Diapositive
Slide 54 - Diapositive
Plus de leçons comme celle-ci
H6.3 Rekenen met de tangens
Mars 2024
- Leçon avec
38 diapositives
Wiskunde
Middelbare school
havo
Leerjaar 3
tangens
Avril 2018
- Leçon avec
31 diapositives
Wiskunde
Middelbare school
vmbo g, t
Leerjaar 3,4
MCAWIS mavo3 dt3 week 3 les 1
Février 2021
- Leçon avec
26 diapositives
Wiskunde
Middelbare school
mavo
Leerjaar 3
Gonio les 4 overgang hellingspercentage naar tangens
Avril 2020
- Leçon avec
16 diapositives
Wiskunde
Middelbare school
vmbo g, t, mavo
Leerjaar 3
H4.2 hellingsgetal en hellingspercentage (1)
Avril 2024
- Leçon avec
50 diapositives
wiskunde
Middelbare school
havo
Leerjaar 3
MCAWIS mavo3 dt3 week 2 les1
Décembre 2019
- Leçon avec
19 diapositives
Wiskunde
Middelbare school
mavo
Leerjaar 3
3 Havo H2.5 hellingsgetal en 2.6 tangens les 2
Mars 2022
- Leçon avec
28 diapositives
Wiskunde
Middelbare school
havo
Leerjaar 3
MCAWIS mavo3 dt3 week 2 les 1 Roelien
Février 2024
- Leçon avec
26 diapositives
Wiskunde
Middelbare school
mavo
Leerjaar 3