H4 - Herhaalles

Hoofdstuk 4
Kwadraten en wortels
1 / 27
volgende
Slide 1: Tekstslide
WiskundeMiddelbare schoolhavo, vwoLeerjaar 2

In deze les zitten 27 slides, met interactieve quizzen en tekstslides.

time-iconLesduur is: 50 min

Onderdelen in deze les

Hoofdstuk 4
Kwadraten en wortels

Slide 1 - Tekstslide

Leerdoelen voorkennis:
1. Ik kan de kwadraten van 1 t/m 15 + 20 + 25 uit mijn hoofd uitrekenen.
2. Ik kan kwadraten van negatieve getallen uitrekenen en weet het verschil tussen (-9)² en -9².
3. Ik kan berekeningen en een grafiek maken bij een kwadratische formule.

Slide 2 - Tekstslide



Bereken y voor x=-11, alleen cijfer geven
y=2x2+1

Slide 3 - Open vraag

Leerdoel 4, theorie 4.1A:
Leerdoel 4:
Ik kan met kwadratische formules berekeningen uitvoeren en ken de eigenschappen van een parabool.

Slide 4 - Tekstslide

Aantekening leerdoel 4, theorie 4.1A:
Bij een kwadratische formule is de grafiek een parabool.
Bergparabool: getal voor de       negatief
Dalparabool: getal voor de       positief

Grafiek tekenen bij een kwadratische formule:
1. Maak een tabel met 7 punten, van -3 t/m 3.
2. Tekenen de grafiek met een vloeiende lijn.
x2
x2
y=2x2+3
y=21x22

Slide 5 - Tekstslide

De grafiek van deze formule is een?
y=4x2+2
A
Dalparabool
B
Bergparabool

Slide 6 - Quizvraag

Ligt punt A (3,21) op de grafiek van y? Ja of nee.
y=3x25

Slide 7 - Open vraag

Leerdoel 5, theorie 4.2A:
Leerdoel 5:
Ik kan wortels uitrekenen op mijn rekenmachine.

Slide 8 - Tekstslide

Aantekening leerdoel 5, theorie 4.2A:
De wortel is het tegenovergestelde van kwadrateren.

De uitkomst van een wortel is altijd positief. Je kan niet de wortel uitrekenen van een negatief getal.                      kan niet.

De wortels van de kwadraten die je uit je hoofd moet kennen zijn op te lossen in hele getallen. Veel wortels echter niet. Deze moet je goed afronden. 
42=16
16=4
16
2=1,414....

Slide 9 - Tekstslide


81=

Slide 10 - Open vraag

Leerdoel 6, theorie 4.2B:
Leerdoel 6:
Ik kan wortels uitrekenen zonder rekenmachine.


Dit kan alleen bij wortels die uitkomen op een heel getal.
Hierbij is het belangrijk dat je de kwadraten van leerdoel 1 uit je hoofd kent.

Slide 11 - Tekstslide

Aantekening leerdoel 6, theorie 4.2B:
Bij het rekenen met wortels moet je denken aan de rekenvolgorde. Eerst worteltrekken, dan vermenigvuldigen.
Staat er een berekening onder het wortel teken, dan staat dit tussen haakjes en moet je dit eerst uitrekenen.



55+45=
250=
236=

Slide 12 - Tekstslide


23+13=

Slide 13 - Open vraag

Leerdoel 7, theorie 4.3A:
Leerdoel 7:
Ik kan rekenen met een formule met wortels en hier een grafiek van tekenen.


Meestal mag je hierbij je rekenmachine gebruiken.
Dit kun je aan de opgave zien.

Slide 14 - Tekstslide

Aantekening leerdoel 7, theorie 4.3A:
De wortel van een negatief getal bestaat niet.
Je kan dus voor x ook geen waarde invullen zodat het getal onder de wortel negatief wordt.

Grafieken tekenen bij wortelformules:
- tabel is gegeven
- teken een vloeiende kromme door de punten

Slide 15 - Tekstslide

Leerdoel 8, theorie 4.4A:
Leerdoel 8:
Ik kan het kwadraat van een wortel uitrekenen.

Zoals bij de vorige vraag.

want 

1616=(16)2=.......
xx=x2

Slide 16 - Tekstslide

Aantekening leerdoel 8, theorie 4.4A:
De wortel en kwadraat zijn het tegenovergestelde. 
Bij een kwadraat van een wortel heffen ze elkaar op.


                                      dus
(3,7)2=3,7
(ab)2=a2b2
(39)2=32(9)2=99=81

Slide 17 - Tekstslide




(32)23(2)2=

Slide 18 - Open vraag

Leerdoel 9, theorie 4.4B:
Leerdoel 9:
Ik kan een som met gelijksoortige wortels herleiden..

Denk aan de basisregels van herleiden:
2x+3x = 5x
2x+3y = knk

Slide 19 - Tekstslide

Aantekening leerdoel 9, theorie 4.4B:
Wortels herleiden (samenvoegen) kan alleen als het getal onder de wortel hetzelfde is.


 Is het getal onder de wortel een bekende uitkomst van een kwadraat, dan wortel uitrekenen, anders wortel laten staan. 
                                                                                     en niet 4,24...

                                   
5222=32
k5322=knk
316=34=12
32=knk

Slide 20 - Tekstslide




7232=

Slide 21 - Open vraag

Leerdoel 10, theorie 4.4C:
Leerdoel 10:
Ik kan wortels vermenigvuldigen.

Zoals bij de vorige vraag.



94=32=6=36

Slide 22 - Tekstslide

Aantekening leerdoel 10, theorie 4.4C:
Bij wortels vermenigvuldig je de getallen voor de wortel met elkaar en de getallen onder de wortel met elkaar.


Is het getal onder de wortel een bekende uitkomst van een kwadraat, dan wortel uitrekenen, anders wortel laten staan. 
(net als bij wortels optellen)


                                   
2432=68
233=29=23=6

Slide 23 - Tekstslide




62218=

Slide 24 - Open vraag

Leerdoel 11, theorie 4.4D:
Leerdoel 11:
Ik kan factoren voor het wortelteken brengen.





Slide 25 - Tekstslide

Aantekening leerdoel 11, theorie 4.4D:
Als wortels herleid moeten worden (zo kort mogelijk schrijven) moet je het getal onder de wortel zo klein mogelijk maken.  
Probeer een zo'n groot mogelijke mooie kwadraat uit het getal onder de wortel te halen!!


Dus kijk of het getal onder de wortel deelbaar is door, 4, 9, 16, 25
54=96=96=36
320=345=325=65

Slide 26 - Tekstslide



Herleid!
272=

Slide 27 - Open vraag