H5.5

        NATUURKUNDE les
- Pak je BINAS
  - Pak je mobiel
  - Pak pen en papier
1 / 26
volgende
Slide 1: Tekstslide
NatuurkundeMiddelbare schoolhavo, vwoLeerjaar 4

In deze les zitten 26 slides, met interactieve quizzen en tekstslides.

time-iconLesduur is: 45 min

Onderdelen in deze les

        NATUURKUNDE les
- Pak je BINAS
  - Pak je mobiel
  - Pak pen en papier

Slide 1 - Tekstslide

Wat is de halveringstijd van C-14?

A
5730 jaar
B
7530 jaar
C
3750 jaar
D
hij is stabiel

Slide 2 - Quizvraag

Rf - 259 heeft een halveringstijd van 3 s. Na hoeveel seconden is er 87,5 % van de kernen vervallen?
A
6 s
B
12 s
C
9 s
D
15 s

Slide 3 - Quizvraag

Slide 4 - Tekstslide

Slide 5 - Tekstslide

Straling bevat energie!
Geabsorbeerde energie:
- totaal energie : totaal aantal deeltjes x energie deeltje
- massa van het bestraalde orgaan

Slide 6 - Tekstslide

}
}

Slide 7 - Tekstslide

Stralingsdosis

Slide 8 - Tekstslide

  • soort straling

Slide 9 - Tekstslide

Slide 10 - Tekstslide

  • soort straling

Slide 11 - Tekstslide

Slide 12 - Tekstslide

Slide 13 - Tekstslide

Slide 14 - Tekstslide

Slide 15 - Tekstslide

Slide 16 - Tekstslide

Slide 17 - Tekstslide

Voorbeelden
Voorbeeld I: hieronder zien we het verval van een thalliumisotoop in een loodisotoop volgens de volgende kernvervalvergelijking: 

We zien dat de hoeveelheid thalliumatomen in de tijd afneemt. Pb-207 is een stabiel isotoop en vervalt dus niet verder, dus daarom vervallen uiteindelijk alle thalliumatomen naar 10 miljoen loodatomen.



  81207Tl 1   0e + 00γ +   82207Pb

Slide 18 - Tekstslide

Voorbeelden
Een ander voorbeeld is het verval van een Bi-211-atomen. Bismut-211 vervalt met de volgende kernvervalvergelijking:


Echter, Tl-207 is niet stabiel en vervalt ook weer verder zoals we al op de volgende sheet zagen:


En uiteindelijk blijft het stabiele Pb-207 isotoop over.

Voorbeeld II: in de afbeelding hiernaast is het verloop van het verval van Bi-211 en Pb-207 weergegeven. Bi-211 vervalt met de karakteristieke lijn, maar Tl-207 volgt niet dezelfde lijn als in de vorige sheet. 
.












Dat komt doordat Tl-207 zelf ook instabiel is en vervalt naar Pb-207. Daarom zal geen enkel Tl-207 atoom de 10 miljoen gaan halen. 
  83211Bi 24He + 00γ +   81207Tl
  81207Tl 1   0e + 00γ +   82207Pb

Slide 19 - Tekstslide

Voorbeelden
Zoals te zien is in de afbeelding hiernaast, is het aantal Pb-207 atomen weergegeven dat uiteindelijk wel de 10 miljoen haalt. 

Hoe snel de lijn van zowel Bi-211 daalt en Tl-207 stijgt en daalt, is afhankelijk van hun halveringstijden. De halveringstijd van Bi-211 bedraagt 2,16 min (te achterhalen uit de grafiek) en die van Tl-207 bedraagt 4,76 min (waar de oranje lijn piekt).

Stel we willen weten op welk moment de activiteit van thallium het grootst is. In eerste instantie lijkt het nodig om te kijken naar het moment dat de helling van de grafiek het grootst is.

Slide 20 - Tekstslide

Voorbeelden

Het probleem is echter dat de grafiek van thallium niet alleen het verval weergeeft, maar tegelijkertijd ook het ontstaan van nieuwe thalliumatomen. Het antwoord is dat de activiteit maximaal is als de hoeveelheid thallium maximaal is. 

Hoe meer deeltjes er zijn, hoe meer er ook zullen vervallen binnen een bepaalde tijd. Dit komt dus overeen met de piek van de grafiek.

Stel we willen weten hoe groot de activiteit van thallium op dit moment is. Op dit moment loopt de grafiek even horizontaal. Dat wil zeggen dat de hoeveelheid thallium op dat moment even constant was. 
.














Slide 21 - Tekstslide

Voorbeelden
Dit wil zeggen dat er gedurende deze periode evenveel thallium verviel als dat er ontstond. Het lood heeft op dit moment dus dezelfde activiteit als het thallium. Bij de grafiek van thallium konden we de raaklijnmethode niet gebruiken, maar bij de grafiek van bismut wel, zie afbeelding hiernaast.

De activiteit van het thallium-207 isotoop is nu uit te rekenen:



Wat dus een zeer hoge waarde is! Per seconde vervallen 12,4 ·10³ kernen en daarmee ook meteen helium-kernen (α-straling) en gammastraling!
.














At=(ΔtΔN)raaklijn=4500(05600)103=12,4103 Bq

Slide 22 - Tekstslide

Voorbeeld
Nu tijd voor een rekenvoorbeeld. Hieronder zien we het verval van een loodisotoop in een thalliumisotoop. We zien dat de hoeveelheid loodatomen in de tijd afneemt. 

Dit zorgt in eerste instantie voor een toename van de hoeveelheid thalliumatomen. Thallium is echter zelf ook instabiel en vervalt dus zelf ook. Vandaar dat de hoeveelheid thallium op den duur ook begint af te nemen.


Slide 23 - Tekstslide

Voorbeeld
Stel we willen weten op welk moment de activiteit van thallium het grootst is. In eerste instantie lijkt het nodig om te kijken naar het moment dat de helling van de grafiek het grootst is. 

Het probleem is echter dat de grafiek van thallium niet alleen het verval weergeeft, maar tegelijkertijd ook het ontstaan van nieuwe thalliumatomen. Het antwoord is dat de activiteit maximaal is als de hoeveelheid thallium maximaal is. 

Hoe meer deeltjes er zijn, hoe meer er ook zullen vervallen binnen een bepaalde tijd. Dit komt dus overeen met de piek van de grafiek. 

Stel we willen weten hoe groot de activiteit van thallium op dit moment is. Op dit moment loopt de grafiek even horizontaal. Dat wil zeggen dat de hoeveelheid thallium op dat moment even constant was. 


Slide 24 - Tekstslide

Voorbeeld
Dit wil zeggen dat er gedurende deze periode evenveel thallium verviel als dat er ontstond. Het lood heeft op dit moment dus dezelfde activiteit als het thallium. Bij de grafiek van thallium konden we de raaklijnmethode niet gebruiken, maar bij de grafiek van lood wel, zie afbeelding hiernaast.



At=(ΔtΔN)raaklijn=2,7103603,2106=20 Bq

Slide 25 - Tekstslide

Als je vragen hebt, kan je ze hier stellen.

Slide 26 - Open vraag