1.1 Lineaire verbanden

H1  Lineaire formules
1 / 43
next
Slide 1: Slide
WiskundeMiddelbare schoolhavoLeerjaar 2

This lesson contains 43 slides, with interactive quiz, text slides and 3 videos.

time-iconLesson duration is: 45 min

Items in this lesson

H1  Lineaire formules

Slide 1 - Slide

Slide 2 - Slide

Slide 3 - Slide

Slide 4 - Slide

huiswerk controle: § 1 maken

Slide 5 - Slide

antwoordboek in som

Slide 6 - Slide

Slide 7 - Slide

In deze les:§1 Lineaire verbanden
  • Leer je wat een lineaire formule is
  • Hoe je aan de formule kan zien of de grafiek stijgt/daalt
  • Leer je vaststellen of bij een tabel een lineair verband hoort.

Slide 8 - Slide

Slide 9 - Video

een lineair verband

Slide 10 - Slide

huiswerk nakijken
met nieuwe uitleg voor § 1.2 Formules van lijnen

Slide 11 - Slide

Slide 12 - Slide

Slide 13 - Slide

Slide 14 - Slide

Slide 15 - Slide

Slide 16 - Slide

Slide 17 - Slide

Slide 18 - Slide

Slide 19 - Slide

Slide 20 - Slide

Slide 21 - Video

Slide 22 - Slide

Slide 23 - Slide

Slide 24 - Video

Slide 25 - Slide

Slide 26 - Slide

Slide 27 - Slide

Slide 28 - Slide

leerstof TL

Slide 29 - Slide

Slide 30 - Slide

Slide 31 - Slide

Slide 32 - Slide

Slide 33 - Slide

Slide 34 - Slide

Slide 35 - Slide

Slide 36 - Slide

Slide 37 - Slide

stijgend of dalend?
Aan de formule kun je zien of de grafiek stijgt of daalt.

s = 15 - 3a
l = 25 +2t
y = -3x + 15

Slide 38 - Slide

Stijgend

Dalend
l = -5 + 2b
l = -2b +25
l = -4 -4b
l = -2b
w = 2u - 25
w = - 2u + 350

Slide 39 - Drag question

Zelfstandig maken:
Maak §1 af en §2
opdracht 9, 10, 11


= huiswerk 
timer
10:00

Slide 40 - Slide

 Lineaire formules opstellen
Stap 1        Noteer de algemene vorm: y = a x + b 
Stap 2       Bereken het hellingsgetal (a).
Stap 3       Lees de beginwaarde (b) af.
Stap 4       Noteer de lineaire formule.

   


  1. Aflezen. De grafiek stijgt of daalt ... per stap.
  2. Bereken (maak een tabel met twee roosterpunten)
Snijpunt met de y-as (verticale as)
x= 0 geeft y = ...

Slide 41 - Slide

 Lineaire formules
Een lineaire formule heeft altijd de vorm:

De b is de beginwaarde (begingetal). Snijpunt met de verticale as.
De a is de stapgrootte. Wat gebeurt er als je een
stap opzij gaat?
 

De grafiek van een lineaire formule is een rechte lijn.



a > 0  stijgende lijn
a = 0  horizontale lijn
a < 0  dalende lijn
 y = a x + b

Slide 42 - Slide

Afsluiten
  • Wat heb je deze les geleerd?
  • Wat ging er goed in deze les?
  • Wat kan er beter?
  • Morgen heb je dit huiswerk af en nagekeken.

Slide 43 - Slide